ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.09303
  4. Cited By
ProDepth: Boosting Self-Supervised Multi-Frame Monocular Depth with
  Probabilistic Fusion

ProDepth: Boosting Self-Supervised Multi-Frame Monocular Depth with Probabilistic Fusion

12 July 2024
Sungmin Woo
Wonjoon Lee
Woo Jin Kim
Dogyoon Lee
Sangyoun Lee
    MDE
ArXivPDFHTML

Papers citing "ProDepth: Boosting Self-Supervised Multi-Frame Monocular Depth with Probabilistic Fusion"

26 / 26 papers shown
Title
Multi-Frame Self-Supervised Depth with Transformers
Multi-Frame Self-Supervised Depth with Transformers
Vitor Campagnolo Guizilini
Rares Andrei Ambrus
Di Chen
Sergey Zakharov
Adrien Gaidon
ViT
MDE
41
85
0
15 Apr 2022
Attentive and Contrastive Learning for Joint Depth and Motion Field
  Estimation
Attentive and Contrastive Learning for Joint Depth and Motion Field Estimation
Seokju Lee
François Rameau
Fei Pan
In So Kweon
95
33
0
13 Oct 2021
The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth
The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth
Jamie Watson
Oisin Mac Aodha
V. Prisacariu
Gabriel J. Brostow
Michael Firman
MDE
63
270
0
29 Apr 2021
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments
  from a Single Moving Camera
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera
Felix Wimbauer
Nan Yang
Lukas von Stumberg
Niclas Zeller
Daniel Cremers
MDE
39
86
0
24 Nov 2020
Unsupervised Monocular Depth Learning in Dynamic Scenes
Unsupervised Monocular Depth Learning in Dynamic Scenes
Hanhan Li
A. Gordon
Hang Zhao
Vincent Casser
Angelova
MDE
100
136
0
30 Oct 2020
Feature-metric Loss for Self-supervised Learning of Depth and Egomotion
Feature-metric Loss for Self-supervised Learning of Depth and Egomotion
Chang Shu
Kun Yu
Zhixiang Duan
Kuiyuan Yang
SSL
MDE
65
233
0
21 Jul 2020
Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object
  Problem by Semantic Guidance
Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance
Marvin Klingner
Jan-Aike Termöhlen
Jonas Mikolajczyk
Tim Fingscheidt
MDE
108
321
0
14 Jul 2020
EfficientPS: Efficient Panoptic Segmentation
EfficientPS: Efficient Panoptic Segmentation
Rohit Mohan
Abhinav Valada
77
235
0
05 Apr 2020
Self-supervised Monocular Trained Depth Estimation using Self-attention
  and Discrete Disparity Volume
Self-supervised Monocular Trained Depth Estimation using Self-attention and Discrete Disparity Volume
A. Johnston
G. Carneiro
MDE
52
234
0
31 Mar 2020
Don't Forget The Past: Recurrent Depth Estimation from Monocular Video
Don't Forget The Past: Recurrent Depth Estimation from Monocular Video
Vaishakh Patil
Wouter Van Gansbeke
Dengxin Dai
Luc Van Gool
MDE
62
129
0
08 Jan 2020
Scalability in Perception for Autonomous Driving: Waymo Open Dataset
Scalability in Perception for Autonomous Driving: Waymo Open Dataset
Pei Sun
Henrik Kretzschmar
Xerxes Dotiwalla
Aurelien Chouard
Vijaysai Patnaik
...
Shuyang Cheng
Yu Zhang
Jonathon Shlens
Zhifeng Chen
Dragomir Anguelov
101
2,875
0
10 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
391
42,299
0
03 Dec 2019
Unsupervised Scale-consistent Depth and Ego-motion Learning from
  Monocular Video
Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video
Jiawang Bian
Zhichao Li
Naiyan Wang
Huangying Zhan
Chunhua Shen
Ming-Ming Cheng
Ian Reid
MDE
75
509
0
28 Aug 2019
Enforcing geometric constraints of virtual normal for depth prediction
Enforcing geometric constraints of virtual normal for depth prediction
Wei Yin
Yifan Liu
Chunhua Shen
Youliang Yan
3DV
MDE
112
426
0
29 Jul 2019
Self-supervised Learning with Geometric Constraints in Monocular Video:
  Connecting Flow, Depth, and Camera
Self-supervised Learning with Geometric Constraints in Monocular Video: Connecting Flow, Depth, and Camera
Yuhua Chen
Cordelia Schmid
C. Sminchisescu
SSL
MDE
67
245
0
12 Jul 2019
Unsupervised Monocular Depth and Ego-motion Learning with Structure and
  Semantics
Unsupervised Monocular Depth and Ego-motion Learning with Structure and Semantics
Vincent Casser
S. Pirk
R. Mahjourian
A. Angelova
MDE
64
104
0
12 Jun 2019
3D Packing for Self-Supervised Monocular Depth Estimation
3D Packing for Self-Supervised Monocular Depth Estimation
Vitor Campagnolo Guizilini
Rares Andrei Ambrus
Sudeep Pillai
Allan Raventos
Adrien Gaidon
SSL
3DPC
MDE
79
645
0
06 May 2019
Unsupervised Learning of Monocular Depth Estimation and Visual Odometry
  with Deep Feature Reconstruction
Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction
Huangying Zhan
Ravi Garg
C. Weerasekera
Kejie Li
Harsh Agarwal
Ian Reid
MDE
50
632
0
11 Mar 2018
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera
  Pose
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose
Zhichao Yin
Jianping Shi
MDE
41
1,141
0
06 Mar 2018
Sparsity Invariant CNNs
Sparsity Invariant CNNs
J. Uhrig
N. Schneider
Lukas Schneider
Uwe Franke
Thomas Brox
Andreas Geiger
124
826
0
22 Aug 2017
SfM-Net: Learning of Structure and Motion from Video
SfM-Net: Learning of Structure and Motion from Video
Sudheendra Vijayanarasimhan
Susanna Ricco
Cordelia Schmid
Rahul Sukthankar
Katerina Fragkiadaki
MDE
66
440
0
25 Apr 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
342
4,700
0
15 Mar 2017
Semi-Supervised Deep Learning for Monocular Depth Map Prediction
Semi-Supervised Deep Learning for Monocular Depth Map Prediction
Yevhen Kuznietsov
J. Stückler
Bastian Leibe
MDE
SSL
141
669
0
09 Feb 2017
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.0K
11,587
0
06 Apr 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
Predicting Depth, Surface Normals and Semantic Labels with a Common
  Multi-Scale Convolutional Architecture
Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
David Eigen
Rob Fergus
VLM
MDE
197
2,679
0
18 Nov 2014
1