ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.02190
  4. Cited By
I2EKF-LO: A Dual-Iteration Extended Kalman Filter Based LiDAR Odometry

I2EKF-LO: A Dual-Iteration Extended Kalman Filter Based LiDAR Odometry

2 July 2024
Wenlu Yu
Jie Xu
Chengwei Zhao
Lijun Zhao
T. Nguyen
Shenghai Yuan
Mingming Bai
Lihua Xie
ArXivPDFHTML

Papers citing "I2EKF-LO: A Dual-Iteration Extended Kalman Filter Based LiDAR Odometry"

4 / 4 papers shown
Title
KISS-ICP: In Defense of Point-to-Point ICP -- Simple, Accurate, and
  Robust Registration If Done the Right Way
KISS-ICP: In Defense of Point-to-Point ICP -- Simple, Accurate, and Robust Registration If Done the Right Way
Ignacio Vizzo
Tiziano Guadagnino
Benedikt Mersch
Louis Wiesmann
Jens Behley
C. Stachniss
3DPC
87
260
0
30 Sep 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds
Kenny Chen
B. Lopez
Ali-akbar Agha-mohammadi
Ankur M. Mehta
56
131
0
01 Oct 2021
Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online
  LiDAR Odometry
Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry
Chongjian Yuan
Wei xu
Xiyuan Liu
Xiaoping Hong
Fu Zhang
44
82
0
15 Sep 2021
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by
  Tightly-Coupled Iterated Kalman Filter
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
Wenyuan Xu
Fu Zhang
66
601
0
16 Oct 2020
1