ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.04039
  4. Cited By
Shaping History: Advanced Machine Learning Techniques for the Analysis
  and Dating of Cuneiform Tablets over Three Millennia

Shaping History: Advanced Machine Learning Techniques for the Analysis and Dating of Cuneiform Tablets over Three Millennia

6 June 2024
Danielle Kapon
Michael Fire
S. Gordin
ArXivPDFHTML

Papers citing "Shaping History: Advanced Machine Learning Techniques for the Analysis and Dating of Cuneiform Tablets over Three Millennia"

30 / 30 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
270
30,123
0
01 Mar 2022
Deep learning classification of large-scale point clouds: A case study
  on cuneiform tablets
Deep learning classification of large-scale point clouds: A case study on cuneiform tablets
Frederik Hagelskjaer
3DV
3DPC
31
7
0
22 Feb 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
410
15,486
0
20 Dec 2021
GLIDE: Towards Photorealistic Image Generation and Editing with
  Text-Guided Diffusion Models
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Alex Nichol
Prafulla Dhariwal
Aditya A. Ramesh
Pranav Shyam
Pamela Mishkin
Bob McGrew
Ilya Sutskever
Mark Chen
334
3,600
0
20 Dec 2021
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Zhisheng Xiao
Karsten Kreis
Arash Vahdat
DiffM
95
551
0
15 Dec 2021
Transparency of Deep Neural Networks for Medical Image Analysis: A
  Review of Interpretability Methods
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
68
316
0
01 Nov 2021
Cascaded Diffusion Models for High Fidelity Image Generation
Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho
Chitwan Saharia
William Chan
David J. Fleet
Mohammad Norouzi
Tim Salimans
151
1,220
0
30 May 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
216
7,831
0
11 May 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
329
3,675
0
18 Feb 2021
Using StyleGAN for Visual Interpretability of Deep Learning Models on
  Medical Images
Using StyleGAN for Visual Interpretability of Deep Learning Models on Medical Images
K. Schutte
O. Moindrot
P. Hérent
Jean-Baptiste Schiratti
S. Jégou
FAtt
MedIm
114
61
0
19 Jan 2021
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
Zongze Wu
Dani Lischinski
Eli Shechtman
DRL
94
483
0
25 Nov 2020
Learning identifiable and interpretable latent models of
  high-dimensional neural activity using pi-VAE
Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE
Ding Zhou
Xue-Xin Wei
DRL
231
81
0
09 Nov 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
260
7,356
0
06 Oct 2020
Metrics for Multi-Class Classification: an Overview
Metrics for Multi-Class Classification: an Overview
Margherita Grandini
Enrico Bagli
Giorgio Visani
VLM
33
921
0
13 Aug 2020
An Explainable Machine Learning Model for Early Detection of Parkinson's
  Disease using LIME on DaTscan Imagery
An Explainable Machine Learning Model for Early Detection of Parkinson's Disease using LIME on DaTscan Imagery
Pavan Rajkumar Magesh
Richard Delwin Myloth
Rijo Jackson Tom
FAtt
37
192
0
01 Aug 2020
VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
  Model Interpretability Applied to the Ironmaking Industry
VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven Model Interpretability Applied to the Ironmaking Industry
C. Schockaert
Vadim Macher
A. Schmitz
30
18
0
15 Jul 2020
NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
69
910
0
08 Jul 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
116
6,266
0
22 Oct 2019
explAIner: A Visual Analytics Framework for Interactive and Explainable
  Machine Learning
explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning
Thilo Spinner
U. Schlegel
H. Schäfer
Mennatallah El-Assady
HAI
59
237
0
29 Jul 2019
Explainable Anatomical Shape Analysis through Deep Hierarchical
  Generative Models
Explainable Anatomical Shape Analysis through Deep Hierarchical Generative Models
C. Biffi
Juan J. Cerrolaza
G. Tarroni
Wenjia Bai
A. de Marvao
...
Jinming Duan
S. Prasad
S. Cook
D. O’Regan
Daniel Rueckert
MedIm
40
46
0
28 Jun 2019
Global and Local Interpretability for Cardiac MRI Classification
Global and Local Interpretability for Cardiac MRI Classification
J. Clough
Ilkay Oksuz
Esther Puyol-Antón
B. Ruijsink
A. King
Julia A. Schnabel
65
60
0
14 Jun 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
566
10,555
0
12 Dec 2018
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCL
DRL
95
479
0
05 Dec 2018
Application of generative autoencoder in de novo molecular design
Application of generative autoencoder in de novo molecular design
T. Blaschke
Marcus Olivecrona
Ola Engkvist
J. Bajorath
Hongming Chen
AI4CE
99
344
0
21 Nov 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,906
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,519
0
11 Apr 2017
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
790
38,735
0
09 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,976
0
16 Feb 2016
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
293
6,931
0
12 Mar 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
1