Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.20876
Cited By
Investigating Calibration and Corruption Robustness of Post-hoc Pruned Perception CNNs: An Image Classification Benchmark Study
31 May 2024
Pallavi Mitra
Gesina Schwalbe
Nadja Klein
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Investigating Calibration and Corruption Robustness of Post-hoc Pruned Perception CNNs: An Image Classification Benchmark Study"
48 / 48 papers shown
Title
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
Jianing Zhu
Hengzhuang Li
Jiangchao Yao
Tongliang Liu
Jianliang Xu
Bo Han
OODD
80
13
0
06 Jun 2023
Pruning Compact ConvNets for Efficient Inference
Sayan Ghosh
Karthik Prasad
Xiaoliang Dai
Peizhao Zhang
Bichen Wu
Graham Cormode
Peter Vajda
VLM
58
4
0
11 Jan 2023
A Comprehensive Survey on Model Quantization for Deep Neural Networks in Image Classification
Babak Rokh
A. Azarpeyvand
Alireza Khanteymoori
MQ
88
98
0
14 May 2022
Deadwooding: Robust Global Pruning for Deep Neural Networks
Sawinder Kaur
Ferdinando Fioretto
Asif Salekin
66
4
0
10 Feb 2022
Membership Inference Attacks and Defenses in Neural Network Pruning
Xiaoyong Yuan
Lan Zhang
AAML
109
45
0
07 Feb 2022
Enabling Verification of Deep Neural Networks in Perception Tasks Using Fuzzy Logic and Concept Embeddings
Gesina Schwalbe
Christian Wirth
Ute Schmid
AAML
26
7
0
03 Jan 2022
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
301
940
0
21 Oct 2021
Sparse Deep Learning: A New Framework Immune to Local Traps and Miscalibration
Y. Sun
Wenjun Xiong
F. Liang
102
8
0
01 Oct 2021
On the Effect of Pruning on Adversarial Robustness
Artur Jordão
Hélio Pedrini
AAML
91
23
0
10 Aug 2021
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
106
367
0
15 Jun 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
92
196
0
15 May 2021
Network Pruning That Matters: A Case Study on Retraining Variants
Duong H. Le
Binh-Son Hua
82
41
0
07 May 2021
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Tailin Liang
C. Glossner
Lei Wang
Shaobo Shi
Xiaotong Zhang
MQ
229
700
0
24 Jan 2021
Strategy to Increase the Safety of a DNN-based Perception for HAD Systems
Timo Sämann
Peter Schlicht
Fabian Hüger
32
15
0
20 Feb 2020
Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks
Oliver Willers
Sebastian Sudholt
Shervin Raafatnia
Stephanie Abrecht
90
80
0
22 Jan 2020
What Do Compressed Deep Neural Networks Forget?
Sara Hooker
Aaron Courville
Gregory Clark
Yann N. Dauphin
Andrea Frome
89
185
0
13 Nov 2019
High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks
Ruben Villegas
Arkanath Pathak
Harini Kannan
D. Erhan
Quoc V. Le
Honglak Lee
VGen
66
139
0
05 Nov 2019
CARS: Continuous Evolution for Efficient Neural Architecture Search
Zhaohui Yang
Yunhe Wang
Xinghao Chen
Boxin Shi
Chao Xu
Chunjing Xu
Qi Tian
Chang Xu
102
228
0
11 Sep 2019
Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
Claudio Michaelis
Benjamin Mitzkus
Robert Geirhos
E. Rusak
Oliver Bringmann
Alexander S. Ecker
Matthias Bethge
Wieland Brendel
3DPC
103
452
0
17 Jul 2019
Importance Estimation for Neural Network Pruning
Pavlo Molchanov
Arun Mallya
Stephen Tyree
I. Frosio
Jan Kautz
3DPC
89
885
0
25 Jun 2019
Adversarially Robust Distillation
Micah Goldblum
Liam H. Fowl
Soheil Feizi
Tom Goldstein
AAML
78
210
0
23 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
194
3,455
0
28 Mar 2019
Model Compression with Adversarial Robustness: A Unified Optimization Framework
Shupeng Gui
Haotao Wang
Chen Yu
Haichuan Yang
Zhangyang Wang
Ji Liu
MQ
65
138
0
10 Feb 2019
Really should we pruning after model be totally trained? Pruning based on a small amount of training
Li Yue
Zhao Weibin
Shang-Te Lin
VLM
29
5
0
24 Jan 2019
Sparse DNNs with Improved Adversarial Robustness
Yiwen Guo
Chao Zhang
Changshui Zhang
Yurong Chen
AAML
86
154
0
23 Oct 2018
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
40
1,475
0
11 Oct 2018
SNIP: Single-shot Network Pruning based on Connection Sensitivity
Namhoon Lee
Thalaiyasingam Ajanthan
Philip Torr
VLM
269
1,211
0
04 Oct 2018
Object Detection with Deep Learning: A Review
Zhong-Qiu Zhao
Peng Zheng
Shou-tao Xu
Xindong Wu
ObjD
134
4,017
0
15 Jul 2018
Benchmarking Neural Network Robustness to Common Corruptions and Surface Variations
Dan Hendrycks
Thomas G. Dietterich
OOD
84
202
0
04 Jul 2018
Towards Dependability Metrics for Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Chung-Hao Huang
Harald Ruess
Hirotoshi Yasuoka
55
44
0
06 Jun 2018
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
82
562
0
30 May 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
272
3,488
0
09 Mar 2018
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
Yihui He
Ji Lin
Zhijian Liu
Hanrui Wang
Li Li
Song Han
100
1,349
0
10 Feb 2018
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
197
1,282
0
05 Oct 2017
Learning Efficient Convolutional Networks through Network Slimming
Zhuang Liu
Jianguo Li
Zhiqiang Shen
Gao Huang
Shoumeng Yan
Changshui Zhang
130
2,426
0
22 Aug 2017
Channel Pruning for Accelerating Very Deep Neural Networks
Yihui He
Xiangyu Zhang
Jian Sun
206
2,531
0
19 Jul 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,871
0
14 Jun 2017
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
195
3,707
0
31 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
282
8,587
0
16 Aug 2016
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
253
2,405
0
21 Jun 2016
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
102
4,178
0
25 Apr 2016
Understanding How Image Quality Affects Deep Neural Networks
Samuel F. Dodge
Lina Karam
VLM
85
732
0
14 Apr 2016
EIE: Efficient Inference Engine on Compressed Deep Neural Network
Song Han
Xingyu Liu
Huizi Mao
Jing Pu
A. Pedram
M. Horowitz
W. Dally
132
2,461
0
04 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
263
8,862
0
01 Oct 2015
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
316
6,709
0
08 Jun 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,529
0
04 Sep 2014
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
FAtt
179
1,693
0
02 Apr 2014
1