ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.05226
19
4

Deadwooding: Robust Global Pruning for Deep Neural Networks

10 February 2022
Sawinder Kaur
Ferdinando Fioretto
Asif Salekin
ArXivPDFHTML
Abstract

The ability of Deep Neural Networks to approximate highly complex functions is key to their success. This benefit, however, comes at the expense of a large model size, which challenges its deployment in resource-constrained environments. Pruning is an effective technique used to limit this issue, but often comes at the cost of reduced accuracy and adversarial robustness. This paper addresses these shortcomings and introduces Deadwooding, a novel global pruning technique that exploits a Lagrangian Dual method to encourage model sparsity while retaining accuracy and ensuring robustness. The resulting model is shown to significantly outperform the state-of-the-art studies in measures of robustness and accuracy.

View on arXiv
Comments on this paper