ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.11067
  4. Cited By
Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
v1v2v3 (latest)

Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning

17 May 2024
Nisha Lakshmana Raichur
Lucas Heublein
Tobias Feigl
A. Rügamer
Christopher Mutschler
Felix Ott
    CLLBDL
ArXiv (abs)PDFHTML

Papers citing "Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning"

48 / 48 papers shown
Title
5G-DIL: Domain Incremental Learning with Similarity-Aware Sampling for Dynamic 5G Indoor Localization
5G-DIL: Domain Incremental Learning with Similarity-Aware Sampling for Dynamic 5G Indoor Localization
Nisha Lakshmana Raichur
Lucas Heublein
Christopher Mutschler
Felix Ott
61
0
0
23 May 2025
VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification
VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification
Lucas Heublein
Simon Kocher
Tobias Feigl
A. Rügamer
Christopher Mutschler
Felix Ott
DRL
84
1
0
14 Apr 2025
Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies
Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies
Lucas Heublein
Nisha Lakshmana Raichur
Tobias Feigl
Tobias Brieger
Fin Heuer
Lennart Asbach
A. Rügamer
Felix Ott
209
8
0
31 Mar 2025
Federated Learning with MMD-based Early Stopping for Adaptive GNSS Interference Classification
Federated Learning with MMD-based Early Stopping for Adaptive GNSS Interference Classification
Nishant S. Gaikwad
Lucas Heublein
Nisha Lakshmana Raichur
Tobias Feigl
Christopher Mutschler
Felix Ott
116
7
0
31 Dec 2024
Achieving Generalization in Orchestrating GNSS Interference Monitoring
  Stations Through Pseudo-Labeling
Achieving Generalization in Orchestrating GNSS Interference Monitoring Stations Through Pseudo-Labeling
Lucas Heublein
Tobias Feigl
A. Rügamer
Felix Ott
123
7
0
03 Oct 2024
Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization
Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization
Lucas Heublein
Tobias Feigl
Thorsten Nowak
A. Rügamer
Christopher Mutschler
Felix Ott
98
8
0
23 Sep 2024
Few-Shot Learning with Uncertainty-based Quadruplet Selection for
  Interference Classification in GNSS Data
Few-Shot Learning with Uncertainty-based Quadruplet Selection for Interference Classification in GNSS Data
Felix Ott
Lucas Heublein
Nisha Lakshmana Raichur
Tobias Feigl
Jonathan Hansen
A. Rügamer
Christopher Mutschler
85
9
0
09 Feb 2024
Class-Balancing Diffusion Models
Class-Balancing Diffusion Models
Yiming Qin
Huangjie Zheng
Jiangchao Yao
Mingyuan Zhou
Ya Zhang
DiffM
123
44
0
30 Apr 2023
Class-Incremental Exemplar Compression for Class-Incremental Learning
Class-Incremental Exemplar Compression for Class-Incremental Learning
Zilin Luo
Yaoyao Liu
Bernt Schiele
Qianru Sun
VLMCLL
149
49
0
24 Mar 2023
Bayesian Self-Supervised Contrastive Learning
Bayesian Self-Supervised Contrastive Learning
B. Liu
Bang-wei Wang
Tianrui Li
SSLBDL
104
4
0
27 Jan 2023
Uncertainty-aware Evaluation of Time-Series Classification for Online
  Handwriting Recognition with Domain Shift
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift
Andreas Klass
Sven M. Lorenz
M. Lauer-Schmaltz
David Rügamer
Bernd Bischl
Christopher Mutschler
Felix Ott
79
10
0
17 Jun 2022
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
  Learning
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Da-Wei Zhou
Qiwen Wang
Han-Jia Ye
De-Chuan Zhan
83
140
0
26 May 2022
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
Fu Lee Wang
Da-Wei Zhou
Han-Jia Ye
De-Chuan Zhan
CLL
97
262
0
10 Apr 2022
General Incremental Learning with Domain-aware Categorical
  Representations
General Incremental Learning with Domain-aware Categorical Representations
Jiangwei Xie
Shipeng Yan
Xuming He
OODCLL
134
39
0
08 Apr 2022
Online Continual Learning on a Contaminated Data Stream with Blurry Task
  Boundaries
Online Continual Learning on a Contaminated Data Stream with Blurry Task Boundaries
Jihwan Bang
Hyun-woo Koh
Seulki Park
Hwanjun Song
Jung-Woo Ha
Jonghyun Choi
CLL
104
40
0
29 Mar 2022
Auxiliary Cross-Modal Representation Learning with Triplet Loss
  Functions for Online Handwriting Recognition
Auxiliary Cross-Modal Representation Learning with Triplet Loss Functions for Online Handwriting Recognition
Felix Ott
David Rügamer
Lucas Heublein
Bernd Bischl
Christopher Mutschler
131
10
0
16 Feb 2022
Learning to Prompt for Continual Learning
Learning to Prompt for Continual Learning
Zifeng Wang
Zizhao Zhang
Chen-Yu Lee
Han Zhang
Ruoxi Sun
Xiaoqi Ren
Guolong Su
Vincent Perot
Jennifer Dy
Tomas Pfister
CLLVPVLMKELMVLM
107
801
0
16 Dec 2021
Bayesian Graph Contrastive Learning
Bayesian Graph Contrastive Learning
Arman Hasanzadeh
Mohammadreza Armandpour
Ehsan Hajiramezanali
Mingyuan Zhou
N. Duffield
K. Narayanan
UQCVBDLSSL
53
5
0
15 Dec 2021
CLASSIC: Continual and Contrastive Learning of Aspect Sentiment
  Classification Tasks
CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks
Zixuan Ke
Bing-Quan Liu
Hu Xu
Lei Shu
CLL
77
58
0
05 Dec 2021
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
Arthur Douillard
Alexandre Ramé
Guillaume Couairon
Matthieu Cord
CLL
149
314
0
22 Nov 2021
Online Continual Learning on Class Incremental Blurry Task Configuration
  with Anytime Inference
Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference
Hyun-woo Koh
Dahyun Kim
Jung-Woo Ha
Jonghyun Choi
CLL
72
69
0
19 Oct 2021
Co$^2$L: Contrastive Continual Learning
Co2^22L: Contrastive Continual Learning
Hyuntak Cha
Jaeho Lee
Jinwoo Shin
CLLSSLVLM
170
309
0
28 Jun 2021
Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Jihwan Bang
Heesu Kim
Y. Yoo
Jung-Woo Ha
Jonghyun Choi
CLL
130
347
0
31 Mar 2021
Contrastive Domain Adaptation
Contrastive Domain Adaptation
Mamatha Thota
Georgios Leontidis
SSL
95
60
0
26 Mar 2021
Online Continual Learning in Image Classification: An Empirical Survey
Online Continual Learning in Image Classification: An Empirical Survey
Zheda Mai
Ruiwen Li
Jihwan Jeong
David Quispe
Hyunwoo J. Kim
Scott Sanner
VLMCLL
142
422
0
25 Jan 2021
Continual Lifelong Learning in Natural Language Processing: A Survey
Continual Lifelong Learning in Natural Language Processing: A Survey
Magdalena Biesialska
Katarzyna Biesialska
Marta R. Costa-jussá
KELMCLL
114
222
0
17 Dec 2020
Class-incremental learning: survey and performance evaluation on image
  classification
Class-incremental learning: survey and performance evaluation on image classification
Marc Masana
Xialei Liu
Bartlomiej Twardowski
Mikel Menta
Andrew D. Bagdanov
Joost van de Weijer
CLL
95
701
0
28 Oct 2020
Multi-Loss Weighting with Coefficient of Variations
Multi-Loss Weighting with Coefficient of Variations
R. Groenendijk
Sezer Karaoglu
Theo Gevers
Thomas Mensink
165
55
0
03 Sep 2020
Semantic Drift Compensation for Class-Incremental Learning
Semantic Drift Compensation for Class-Incremental Learning
Lu Yu
Bartlomiej Twardowski
Xialei Liu
Luis Herranz
Kai Wang
Yongmei Cheng
Shangling Jui
Joost van de Weijer
CLL
95
345
0
01 Apr 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
467
19,003
0
13 Feb 2020
Maintaining Discrimination and Fairness in Class Incremental Learning
Maintaining Discrimination and Fairness in Class Incremental Learning
Bowen Zhao
Xi Xiao
Guojun Gan
Bin Zhang
Shutao Xia
CLL
155
434
0
16 Nov 2019
Adversarial Representation Learning for Text-to-Image Matching
Adversarial Representation Learning for Text-to-Image Matching
N. Sarafianos
Xiang Xu
I. Kakadiaris
GAN
122
188
0
28 Aug 2019
Large Scale Incremental Learning
Large Scale Incremental Learning
Yue Wu
Yinpeng Chen
Lijuan Wang
Yuancheng Ye
Zicheng Liu
Yandong Guo
Y. Fu
CLL
138
1,264
0
30 May 2019
A Theoretically Sound Upper Bound on the Triplet Loss for Improving the
  Efficiency of Deep Distance Metric Learning
A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning
Thanh-Toan Do
Toan M. Tran
Ian Reid
B. V. Kumar
Tuan Hoang
G. Carneiro
65
67
0
18 Apr 2019
Experience Replay for Continual Learning
Experience Replay for Continual Learning
David Rolnick
Arun Ahuja
Jonathan Richard Schwarz
Timothy Lillicrap
Greg Wayne
CLL
162
1,179
0
28 Nov 2018
MHTN: Modal-adversarial Hybrid Transfer Network for Cross-modal
  Retrieval
MHTN: Modal-adversarial Hybrid Transfer Network for Cross-modal Retrieval
Xin Huang
Yuxin Peng
Mingkuan Yuan
GAN
72
111
0
08 Aug 2017
Gradient Episodic Memory for Continual Learning
Gradient Episodic Memory for Continual Learning
David Lopez-Paz
MarcÁurelio Ranzato
VLMCLL
322
2,752
0
26 Jun 2017
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry
  and Semantics
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
282
3,144
0
19 May 2017
Beyond triplet loss: a deep quadruplet network for person
  re-identification
Beyond triplet loss: a deep quadruplet network for person re-identification
Weihua Chen
Xiaotang Chen
Jianguo Zhang
Kaiqi Huang
102
1,145
0
06 Apr 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
309
8,206
0
15 Mar 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDLOODUDUQCVPER
462
4,735
0
15 Mar 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
400
7,631
0
02 Dec 2016
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
310
3,799
0
23 Nov 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLLOODSSL
467
4,461
0
29 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.7K
195,301
0
10 Dec 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
3DH
619
13,210
0
12 Mar 2015
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
634
26,297
0
11 Nov 2013
DeCAF: A Deep Convolutional Activation Feature for Generic Visual
  Recognition
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLMObjD
235
4,958
0
06 Oct 2013
1