ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.04405
  4. Cited By
Weakly-Supervised Residual Evidential Learning for Multi-Instance
  Uncertainty Estimation
v1v2 (latest)

Weakly-Supervised Residual Evidential Learning for Multi-Instance Uncertainty Estimation

7 May 2024
Pei Liu
Luping Ji
    EDL
ArXiv (abs)PDFHTMLGithub (13★)

Papers citing "Weakly-Supervised Residual Evidential Learning for Multi-Instance Uncertainty Estimation"

26 / 26 papers shown
Title
Interpretable Vision-Language Survival Analysis with Ordinal Inductive Bias for Computational Pathology
Interpretable Vision-Language Survival Analysis with Ordinal Inductive Bias for Computational Pathology
Pei Liu
Luping Ji
Jiaxiang Gou
Bo Fu
Mao Ye
179
2
0
14 Sep 2024
Flexible Visual Recognition by Evidential Modeling of Confusion and
  Ignorance
Flexible Visual Recognition by Evidential Modeling of Confusion and Ignorance
Lei Fan
Bo Liu
Haoxiang Li
Ying Wu
Gang Hua
71
5
0
14 Sep 2023
Open Set Action Recognition via Multi-Label Evidential Learning
Open Set Action Recognition via Multi-Label Evidential Learning
Chen Zhao
Dawei Du
A. Hoogs
Christopher Funk
EDL
59
26
0
27 Feb 2023
Bayesian Nonparametric Submodular Video Partition for Robust Anomaly
  Detection
Bayesian Nonparametric Submodular Video Partition for Robust Anomaly Detection
Hitesh Sapkota
Qi Yu
54
40
0
24 Mar 2022
OpenTAL: Towards Open Set Temporal Action Localization
OpenTAL: Towards Open Set Temporal Action Localization
Wentao Bao
Qi Yu
Yu Kong
EDL
65
29
0
10 Mar 2022
On the Practicality of Deterministic Epistemic Uncertainty
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
86
61
0
01 Jul 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UDUQCVPERBDL
96
155
0
23 Feb 2021
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature
  Magnitude Learning
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning
Yu Tian
Guansong Pang
Yuanhong Chen
Rajvinder Singh
Johan Verjans
G. Carneiro
AI4TS
89
310
0
25 Jan 2021
Dual-stream Multiple Instance Learning Network for Whole Slide Image
  Classification with Self-supervised Contrastive Learning
Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning
Bin Li
Yin Li
K. Eliceiri
93
621
0
17 Nov 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
240
451
0
17 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCVUDEDLBDL
83
186
0
16 Jun 2020
A General Framework for Uncertainty Estimation in Deep Learning
A General Framework for Uncertainty Estimation in Deep Learning
Antonio Loquercio
Mattia Segu
Davide Scaramuzza
UQCVBDLOOD
68
293
0
16 Jul 2019
Graph Convolutional Label Noise Cleaner: Train a Plug-and-play Action
  Classifier for Anomaly Detection
Graph Convolutional Label Noise Cleaner: Train a Plug-and-play Action Classifier for Anomaly Detection
Jia-Xing Zhong
Nannan Li
Weijie Kong
Shan Liu
Thomas H. Li
Ge Li
NoLaSSL
114
407
0
18 Mar 2019
Quantifying the effects of data augmentation and stain color
  normalization in convolutional neural networks for computational pathology
Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
David Tellez
G. Litjens
Péter Bándi
W. Bulten
J. Bokhorst
F. Ciompi
Jeroen van der Laak
MedImOOD
60
486
0
18 Feb 2019
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OODUQCVEDLBDL
188
1,002
0
05 Jun 2018
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UDBDLEDLUQCVPER
199
923
0
28 Feb 2018
Attention-based Deep Multiple Instance Learning
Attention-based Deep Multiple Instance Learning
Maximilian Ilse
Jakub M. Tomczak
Max Welling
182
1,827
0
13 Feb 2018
Real-world Anomaly Detection in Surveillance Videos
Real-world Anomaly Detection in Surveillance Videos
Waqas Sultani
Chen Chen
M. Shah
AI4TS
179
1,492
0
12 Jan 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,928
0
25 Aug 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDLOODUDUQCVPER
362
4,721
0
15 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
847
5,847
0
05 Dec 2016
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH3DPC3DVPINN
500
14,371
0
02 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
867
9,353
0
06 Jun 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
174
3,275
0
05 Dec 2014
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
146
2,693
0
14 Nov 2013
Multi-Instance Multi-Label Learning
Multi-Instance Multi-Label Learning
Zhi Zhou
Min-Ling Zhang
Sheng-Jun Huang
Yu-Feng Li
120
415
0
24 Aug 2008
1