ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.08854
  4. Cited By
Moments of Clarity: Streamlining Latent Spaces in Machine Learning using
  Moment Pooling

Moments of Clarity: Streamlining Latent Spaces in Machine Learning using Moment Pooling

13 March 2024
Rikab Gambhir
Athis Osathapan
Jesse Thaler
ArXiv (abs)PDFHTML

Papers citing "Moments of Clarity: Streamlining Latent Spaces in Machine Learning using Moment Pooling"

26 / 26 papers shown
Title
Mapping the Multiverse of Latent Representations
Mapping the Multiverse of Latent Representations
Jeremy Wayland
Corinna Coupette
Bastian Rieck
87
8
0
02 Feb 2024
Explainable Equivariant Neural Networks for Particle Physics: PELICAN
Explainable Equivariant Neural Networks for Particle Physics: PELICAN
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
Xiaoyang Liu
68
25
0
31 Jul 2023
Interpretability of Machine Learning: Recent Advances and Future
  Prospects
Interpretability of Machine Learning: Recent Advances and Future Prospects
Lei Gao
L. Guan
AAML
88
33
0
30 Apr 2023
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant
  Aggregator Network for Particle Physics
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
55
31
0
01 Nov 2022
IRC-safe Graph Autoencoder for unsupervised anomaly detection
IRC-safe Graph Autoencoder for unsupervised anomaly detection
Oliver Atkinson
Akanksha Bhardwaj
C. Englert
P. Konar
Vishal S. Ngairangbam
M. Spannowsky
53
26
0
26 Apr 2022
Particle Transformer for Jet Tagging
Particle Transformer for Jet Tagging
H. Qu
Congqiao Li
Sitian Qian
ViTMedIm
49
103
0
08 Feb 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
73
115
0
07 Dec 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaMLAI4CELRM
210
672
0
20 Mar 2021
A Survey on Neural Network Interpretability
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaMLXAI
204
679
0
28 Dec 2020
Image-Based Jet Analysis
Image-Based Jet Analysis
Michael Kagan
63
7
0
17 Dec 2020
Jet tagging in the Lund plane with graph networks
Jet tagging in the Lund plane with graph networks
F. Dreyer
H. Qu
79
75
0
15 Dec 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and
  Challenges
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TSAI4CE
82
402
0
19 Oct 2020
ParticleNet: Jet Tagging via Particle Clouds
ParticleNet: Jet Tagging via Particle Clouds
H. Qu
L. Gouskos
3DPCMU
79
230
0
22 Feb 2019
Energy Flow Networks: Deep Sets for Particle Jets
Energy Flow Networks: Deep Sets for Particle Jets
Patrick T. Komiske
E. Metodiev
Jesse Thaler
PINN3DPC
88
255
0
11 Oct 2018
Machine Learning in High Energy Physics Community White Paper
Machine Learning in High Energy Physics Community White Paper
K. Albertsson
Piero Altoe
D. Anderson
John R. Anderson
Michael Andrews
...
Michael Williams
Wenjing Wu
Stefan Wunsch
Kun Yang
O. Zapata
AI4CE
43
221
0
08 Jul 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
95
1,857
0
31 May 2018
On the Topic of Jets: Disentangling Quarks and Gluons at Colliders
On the Topic of Jets: Disentangling Quarks and Gluons at Colliders
E. Metodiev
Jesse Thaler
72
71
0
31 Jan 2018
Recursive Neural Networks in Quark/Gluon Tagging
Recursive Neural Networks in Quark/Gluon Tagging
Taoli Cheng
54
98
0
07 Nov 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
701
131,652
0
12 Jun 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
408
2,464
0
10 Mar 2017
Deep learning in color: towards automated quark/gluon jet discrimination
Deep learning in color: towards automated quark/gluon jet discrimination
Patrick T. Komiske
E. Metodiev
M. Schwartz
59
261
0
05 Dec 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
433
18,361
0
27 May 2016
Long Short-Term Memory-Networks for Machine Reading
Long Short-Term Memory-Networks for Machine Reading
Jianpeng Cheng
Li Dong
Mirella Lapata
AIMatRALM
105
1,120
0
25 Jan 2016
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
326
18,625
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Neural Machine Translation by Jointly Learning to Align and Translate
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
558
27,311
0
01 Sep 2014
1