Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.08890
Cited By
Defenses in Adversarial Machine Learning: A Survey
13 December 2023
Baoyuan Wu
Shaokui Wei
Mingli Zhu
Meixi Zheng
Zihao Zhu
Ruotong Wang
Hongrui Chen
Danni Yuan
Li Liu
Qingshan Liu
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Defenses in Adversarial Machine Learning: A Survey"
50 / 101 papers shown
Title
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors
Peter Lorenz
Mario Fernandez
Jens Müller
Ullrich Kothe
AAML
195
1
0
21 Jun 2024
Domain Watermark: Effective and Harmless Dataset Copyright Protection is Closed at Hand
Junfeng Guo
Yiming Li
Lixu Wang
Shu-Tao Xia
Heng-Chiao Huang
Cong Liu
Boheng Li
78
61
0
09 Oct 2023
Towards Stable Backdoor Purification through Feature Shift Tuning
Rui Min
Zeyu Qin
Li Shen
Minhao Cheng
AAML
90
22
0
03 Oct 2023
Robust Principles: Architectural Design Principles for Adversarially Robust CNNs
Sheng-Hsuan Peng
Weilin Xu
Cory Cornelius
Matthew Hull
Kevin Wenliang Li
Rahul Duggal
Mansi Phute
Jason Martin
Duen Horng Chau
AAML
65
48
0
30 Aug 2023
Towards Attack-tolerant Federated Learning via Critical Parameter Analysis
Sungwon Han
Sungwon Park
Fangzhao Wu
Sundong Kim
Bin Zhu
Xing Xie
Meeyoung Cha
FedML
63
10
0
18 Aug 2023
Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared Adversarial Examples
Shaokui Wei
Ruotong Wang
H. Zha
Baoyuan Wu
TPM
81
38
0
20 Jul 2023
Detecting Backdoors in Pre-trained Encoders
Shiwei Feng
Guanhong Tao
Shuyang Cheng
Guangyu Shen
Xiangzhe Xu
Yingqi Liu
Kaiyuan Zhang
Shiqing Ma
Xiangyu Zhang
117
53
0
23 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
79
35
0
19 Mar 2023
Aegis: Mitigating Targeted Bit-flip Attacks against Deep Neural Networks
Jialai Wang
Ziyuan Zhang
Meiqi Wang
Han Qiu
Tianwei Zhang
Qi Li
Zongpeng Li
Tao Wei
Chao Zhang
AAML
71
22
0
27 Feb 2023
ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning Paradigms
Minzhou Pan
Yi Zeng
Lingjuan Lyu
Xinyu Lin
R. Jia
AAML
67
37
0
22 Feb 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
56
55
0
24 Jan 2023
Adversarial training with informed data selection
Marcele O. K. Mendonça
Javier Maroto
P. Frossard
P. Diniz
AAML
31
4
0
07 Jan 2023
DISCO: Adversarial Defense with Local Implicit Functions
Chih-Hui Ho
Nuno Vasconcelos
AAML
100
39
0
11 Dec 2022
Revisiting Outer Optimization in Adversarial Training
Ali Dabouei
Fariborz Taherkhani
Sobhan Soleymani
Nasser M. Nasrabadi
AAML
83
4
0
02 Sep 2022
One-vs-the-Rest Loss to Focus on Important Samples in Adversarial Training
Sekitoshi Kanai
Shin'ya Yamaguchi
Masanori Yamada
Hiroshi Takahashi
Kentaro Ohno
Yasutoshi Ida
AAML
58
9
0
21 Jul 2022
One-shot Neural Backdoor Erasing via Adversarial Weight Masking
Shuwen Chai
Jinghui Chen
AAML
75
35
0
10 Jul 2022
Improving Adversarial Robustness by Putting More Regularizations on Less Robust Samples
Dongyoon Yang
Insung Kong
Yongdai Kim
OOD
AAML
69
10
0
07 Jun 2022
Robust Weight Perturbation for Adversarial Training
Chaojian Yu
Bo Han
Biwei Huang
Li Shen
Shiming Ge
Bo Du
Tongliang Liu
AAML
64
36
0
30 May 2022
Towards A Proactive ML Approach for Detecting Backdoor Poison Samples
Xiangyu Qi
Tinghao Xie
Jiachen T. Wang
Tong Wu
Saeed Mahloujifar
Prateek Mittal
AAML
63
52
0
26 May 2022
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
269
450
0
16 May 2022
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
103
73
0
26 Mar 2022
Self-Ensemble Adversarial Training for Improved Robustness
Hongjun Wang
Yisen Wang
OOD
AAML
54
50
0
18 Mar 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
120
123
0
21 Feb 2022
Backdoor Defense via Decoupling the Training Process
Kunzhe Huang
Yiming Li
Baoyuan Wu
Zhan Qin
Kui Ren
AAML
FedML
56
194
0
05 Feb 2022
Boundary Defense Against Black-box Adversarial Attacks
Manjushree B. Aithal
Xiaohua Li
AAML
62
6
0
31 Jan 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
273
348
0
15 Dec 2021
Mutual Adversarial Training: Learning together is better than going alone
Jiang-Long Liu
Chun Pong Lau
Hossein Souri
Soheil Feizi
Ramalingam Chellappa
OOD
AAML
65
25
0
09 Dec 2021
ℓ
∞
\ell_\infty
ℓ
∞
-Robustness and Beyond: Unleashing Efficient Adversarial Training
H. M. Dolatabadi
S. Erfani
C. Leckie
OOD
AAML
67
12
0
01 Dec 2021
AEVA: Black-box Backdoor Detection Using Adversarial Extreme Value Analysis
Junfeng Guo
Ang Li
Cong Liu
AAML
126
76
0
28 Oct 2021
Anti-Backdoor Learning: Training Clean Models on Poisoned Data
Yige Li
X. Lyu
Nodens Koren
Lingjuan Lyu
Yue Liu
Xingjun Ma
OnRL
91
336
0
22 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
104
302
0
18 Oct 2021
Trigger Hunting with a Topological Prior for Trojan Detection
Xiaoling Hu
Xiaoyu Lin
Michael Cogswell
Yi Yao
Susmit Jha
Chao Chen
AAML
51
46
0
15 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
79
32
0
11 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
112
102
0
07 Oct 2021
Adversarial Unlearning of Backdoors via Implicit Hypergradient
Yi Zeng
Si-An Chen
Won Park
Z. Morley Mao
Ming Jin
R. Jia
AAML
129
177
0
07 Oct 2021
Adversarial purification with Score-based generative models
Jongmin Yoon
Sung Ju Hwang
Juho Lee
DiffM
90
158
0
11 Jun 2021
Attacking Adversarial Attacks as A Defense
Boxi Wu
Heng Pan
Li Shen
Jindong Gu
Shuai Zhao
Zhifeng Li
Deng Cai
Xiaofei He
Wei Liu
AAML
71
32
0
09 Jun 2021
Improved OOD Generalization via Adversarial Training and Pre-training
Mingyang Yi
Lu Hou
Jiacheng Sun
Lifeng Shang
Xin Jiang
Qun Liu
Zhi-Ming Ma
VLM
70
84
0
24 May 2021
Random Noise Defense Against Query-Based Black-Box Attacks
Zeyu Qin
Yanbo Fan
H. Zha
Baoyuan Wu
AAML
127
60
0
23 Apr 2021
Rethinking the Backdoor Attacks' Triggers: A Frequency Perspective
Yi Zeng
Won Park
Z. Morley Mao
R. Jia
AAML
74
215
0
07 Apr 2021
LiBRe: A Practical Bayesian Approach to Adversarial Detection
Zhijie Deng
Xiao Yang
Shizhen Xu
Hang Su
Jun Zhu
BDL
AAML
68
62
0
27 Mar 2021
Combating Adversaries with Anti-Adversaries
Motasem Alfarra
Juan C. Pérez
Ali K. Thabet
Adel Bibi
Philip Torr
Guohao Li
AAML
83
27
0
26 Mar 2021
Adversarial Attacks are Reversible with Natural Supervision
Chengzhi Mao
Mia Chiquer
Hao Wang
Junfeng Yang
Carl Vondrick
BDL
AAML
86
56
0
26 Mar 2021
SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain
P. Harder
Franz-Josef Pfreundt
Margret Keuper
J. Keuper
AAML
75
50
0
04 Mar 2021
Online Adversarial Purification based on Self-Supervision
Changhao Shi
Chester Holtz
Zhengchao Wan
AAML
63
57
0
23 Jan 2021
On the Effectiveness of Small Input Noise for Defending Against Query-based Black-Box Attacks
Junyoung Byun
Hyojun Go
Changick Kim
AAML
170
21
0
13 Jan 2021
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
Basel Alomair
Aleksander Madry
Yue Liu
Tom Goldstein
SILM
109
282
0
18 Dec 2020
Certified Robustness of Nearest Neighbors against Data Poisoning and Backdoor Attacks
Jinyuan Jia
Yupei Liu
Xiaoyu Cao
Neil Zhenqiang Gong
AAML
88
75
0
07 Dec 2020
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks
Ruize Gao
Feng Liu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Masashi Sugiyama
AAML
79
56
0
22 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
120
112
0
05 Oct 2020
1
2
3
Next