ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.07633
  4. Cited By
SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
  Molecular Property Prediction

SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive Molecular Property Prediction

12 December 2023
Andac Demir
Francis Prael
B. Kiziltan
ArXivPDFHTML

Papers citing "SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive Molecular Property Prediction"

19 / 19 papers shown
Title
Multiparameter Persistent Homology for Molecular Property Prediction
Multiparameter Persistent Homology for Molecular Property Prediction
Andac Demir
B. Kiziltan
37
1
0
17 Nov 2023
ToDD: Topological Compound Fingerprinting in Computer-Aided Drug
  Discovery
ToDD: Topological Compound Fingerprinting in Computer-Aided Drug Discovery
Andac Demir
Baris Coskunuzer
I. Segovia-Dominguez
Yuzhou Chen
Yulia R. Gel
B. Kiziltan
47
16
0
07 Nov 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
  Ensembles
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles
O. Ganea
L. Pattanaik
Connor W. Coley
Regina Barzilay
K. Jensen
W. Green
Tommi Jaakkola
AI4CE
75
136
0
08 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
72
446
0
02 Jun 2021
Learning Gradient Fields for Molecular Conformation Generation
Learning Gradient Fields for Molecular Conformation Generation
Chence Shi
Shitong Luo
Minkai Xu
Jian Tang
DiffM
AI4CE
68
214
0
09 May 2021
Learning Neural Generative Dynamics for Molecular Conformation
  Generation
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Yoshua Bengio
Jian-wei Peng
Jian Tang
AI4CE
66
117
0
20 Feb 2021
Uncertainty in Gradient Boosting via Ensembles
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
56
95
0
18 Jun 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
107
683
0
18 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
79
680
0
09 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
252
2,701
0
02 May 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
59
283
0
08 Feb 2020
Measuring and Relieving the Over-smoothing Problem for Graph Neural
  Networks from the Topological View
Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View
Deli Chen
Yankai Lin
Wei Li
Peng Li
Jie Zhou
Xu Sun
75
1,096
0
07 Sep 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
417
5,714
0
25 Jul 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
89
1,305
0
02 Apr 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
193
7,554
0
01 Oct 2018
Covariant Compositional Networks For Learning Graphs
Covariant Compositional Networks For Learning Graphs
Risi Kondor
H. Son
Horace Pan
Brandon M. Anderson
Shubhendu Trivedi
GNN
78
167
0
07 Jan 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
384
19,991
0
30 Oct 2017
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
127
1,069
0
26 Jun 2017
Convolutional Networks on Graphs for Learning Molecular Fingerprints
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams
GNN
170
3,337
0
30 Sep 2015
1