Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.11321
Cited By
v1
v2
v3 (latest)
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
19 November 2023
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation"
41 / 41 papers shown
Title
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
Mihaela van der Schaar
CML
237
5
0
05 Nov 2024
Causal machine learning for predicting treatment outcomes
Stefan Feuerriegel
Dennis Frauen
Valentyn Melnychuk
Jonas Schweisthal
Konstantin Hess
Alicia Curth
Stefan Bauer
Niki Kilbertus
Isaac S. Kohane
Mihaela van der Schaar
CML
171
109
0
11 Oct 2024
Optimal Transport for Treatment Effect Estimation
Hao Wang
Zhichao Chen
Jiajun Fan
Haoxuan Li
Tianqiao Liu
Weiming Liu
Quanyu Dai
Yichao Wang
Zhenhua Dong
Ruiming Tang
OT
CML
65
36
0
27 Oct 2023
Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
Konstantin Hess
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
49
15
0
26 Oct 2023
Data-Driven Allocation of Preventive Care With Application to Diabetes Mellitus Type II
Mathias Kraus
Stefan Feuerriegel
M. Saar-Tsechansky
55
12
0
14 Aug 2023
Sharp Bounds for Generalized Causal Sensitivity Analysis
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
CML
104
19
0
26 May 2023
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding
Miruna Oprescu
Jacob Dorn
Marah Ghoummaid
Andrew Jesson
Nathan Kallus
Uri Shalit
CML
FedML
68
29
0
20 Apr 2023
Sensitivity Analysis for Marginal Structural Models
Matteo Bonvini
Edward H. Kennedy
V. Ventura
Larry A. Wasserman
CML
64
14
0
10 Oct 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
52
52
0
16 Jun 2022
Causal Transformer for Estimating Counterfactual Outcomes
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
86
98
0
14 Apr 2022
Minimax rates for heterogeneous causal effect estimation
Edward H. Kennedy
Sivaraman Balakrishnan
James M. Robins
Larry A. Wasserman
CML
77
31
0
02 Mar 2022
Causal Effect Identification in Cluster DAGs
Tarandeep Anand
A. Ribeiro
Jin Tian
Elias Bareinboim
CML
51
17
0
22 Feb 2022
Treatment Effect Risk: Bounds and Inference
Nathan Kallus
CML
124
17
0
15 Jan 2022
On Inductive Biases for Heterogeneous Treatment Effect Estimation
Alicia Curth
M. Schaar
CML
183
84
0
07 Jun 2021
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding
Andrew Jesson
Sören Mindermann
Y. Gal
Uri Shalit
CML
59
55
0
08 Mar 2021
Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing
Jacob Dorn
Kevin Guo
160
58
0
08 Feb 2021
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
Alicia Curth
M. Schaar
CML
163
149
0
26 Jan 2021
Counterfactual Representation Learning with Balancing Weights
Serge Assaad
Shuxi Zeng
Chenyang Tao
Shounak Datta
Nikhil Mehta
Ricardo Henao
Fan Li
Lawrence Carin
CML
OOD
131
64
0
23 Oct 2020
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
50
74
0
01 Jul 2020
Counterfactual Predictions under Runtime Confounding
Amanda Coston
Edward H. Kennedy
Alexandra Chouldechova
OOD
OffRL
49
28
0
30 Jun 2020
Towards optimal doubly robust estimation of heterogeneous causal effects
Edward H. Kennedy
CML
165
326
0
29 Apr 2020
Estimating Counterfactual Treatment Outcomes over Time Through Adversarially Balanced Representations
Ioana Bica
Ahmed Alaa
James Jordon
M. Schaar
BDL
CML
63
186
0
10 Feb 2020
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
78
100
0
21 Jan 2020
Noise Regularization for Conditional Density Estimation
Jonas Rothfuss
Fabio Ferreira
S. Boehm
Simon Walther
Maxim Ulrich
Tamim Asfour
Andreas Krause
37
32
0
21 Jul 2019
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
183
777
0
10 Jun 2019
Adversarial Balancing-based Representation Learning for Causal Effect Inference with Observational Data
Xin Du
Lei Sun
W. Duivesteijn
Alexander G. Nikolaev
Mykola Pechenizkiy
OOD
CML
46
43
0
30 Apr 2019
Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding
Nathan Kallus
Xiaojie Mao
Angela Zhou
CML
59
94
0
05 Oct 2018
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
Patrick Schwab
Lorenz Linhardt
W. Karlen
CML
BDL
54
111
0
01 Oct 2018
Learning Weighted Representations for Generalization Across Designs
Fredrik D. Johansson
Nathan Kallus
Uri Shalit
David Sontag
OOD
68
87
0
23 Feb 2018
Conditional Density Estimation with Bayesian Normalising Flows
Brian L. Trippe
Richard Turner
BDL
78
84
0
14 Feb 2018
Bayesian Nonparametric Causal Inference: Information Rates and Learning Algorithms
Ahmed Alaa
Mihaela van der Schaar
CML
53
43
0
24 Dec 2017
Quasi-Oracle Estimation of Heterogeneous Treatment Effects
Xinkun Nie
Stefan Wager
CML
156
653
0
13 Dec 2017
Causal Consistency of Structural Equation Models
Paul Kishan Rubenstein
S. Weichwald
Stephan Bongers
Joris M. Mooij
Dominik Janzing
Moritz Grosse-Wentrup
Bernhard Schölkopf
CML
83
129
0
04 Jul 2017
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
Sören R. Künzel
Jasjeet Sekhon
Peter J. Bickel
Bin Yu
CML
164
928
0
12 Jun 2017
Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes
Ahmed Alaa
M. Schaar
CML
173
304
0
10 Apr 2017
Double/Debiased/Neyman Machine Learning of Treatment Effects
Victor Chernozhukov
Denis Chetverikov
Mert Demirer
E. Duflo
Christian B. Hansen
Whitney Newey
CML
FedML
149
351
0
30 Jan 2017
Instrumental variables as bias amplifiers with general outcome and confounding
Peng Ding
T. VanderWeele
Jamie Robins
CML
58
67
0
16 Jan 2017
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
282
729
0
12 May 2016
Estimation and Inference of Heterogeneous Treatment Effects using Random Forests
Stefan Wager
Susan Athey
SyDa
CML
352
2,490
0
14 Oct 2015
To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias
Peng Ding
Luke W. Miratrix
CML
58
124
0
02 Aug 2014
BART: Bayesian additive regression trees
H. Chipman
E. George
R. McCulloch
156
1,794
0
19 Jun 2008
1