ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.10943
22
138

Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms

26 January 2021
Alicia Curth
M. Schaar
    CML
ArXivPDFHTML
Abstract

The need to evaluate treatment effectiveness is ubiquitous in most of empirical science, and interest in flexibly investigating effect heterogeneity is growing rapidly. To do so, a multitude of model-agnostic, nonparametric meta-learners have been proposed in recent years. Such learners decompose the treatment effect estimation problem into separate sub-problems, each solvable using standard supervised learning methods. Choosing between different meta-learners in a data-driven manner is difficult, as it requires access to counterfactual information. Therefore, with the ultimate goal of building better understanding of the conditions under which some learners can be expected to perform better than others a priori, we theoretically analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression. We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice by considering a variety of neural network architectures as base-learners for the discussed meta-learning strategies. In a simulation study, we showcase the relative strengths of the learners under different data-generating processes.

View on arXiv
Comments on this paper