ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.07634
  4. Cited By
ActiveDC: Distribution Calibration for Active Finetuning
v1v2v3 (latest)

ActiveDC: Distribution Calibration for Active Finetuning

13 November 2023
Wenshuai Xu
Zhenhui Hu
Yu Lu
Jinzhou Meng
Qingjie Liu
Yunhong Wang
ArXiv (abs)PDFHTML

Papers citing "ActiveDC: Distribution Calibration for Active Finetuning"

25 / 25 papers shown
Title
Towards Free Data Selection with General-Purpose Models
Towards Free Data Selection with General-Purpose Models
Alessandro Mutti
Mingyu Ding
Patrizia Semeraro
Wei Zhan
79
10
0
29 Sep 2023
CrOC: Cross-View Online Clustering for Dense Visual Representation
  Learning
CrOC: Cross-View Online Clustering for Dense Visual Representation Learning
Thomas Stegmüller
Tim Lebailly
Behzad Bozorgtabar
Tinne Tuytelaars
Jean-Philippe Thiran
85
17
0
23 Mar 2023
Improving Visual Representation Learning through Perceptual
  Understanding
Improving Visual Representation Learning through Perceptual Understanding
Samyakh Tukra
Frederick Hoffman
Ken Chatfield
80
5
0
30 Dec 2022
Active Learning by Feature Mixing
Active Learning by Feature Mixing
Amin Parvaneh
Ehsan Abbasnejad
Damien Teney
Reza Haffari
Anton Van Den Hengel
Javen Qinfeng Shi
81
94
0
14 Mar 2022
iBOT: Image BERT Pre-Training with Online Tokenizer
iBOT: Image BERT Pre-Training with Online Tokenizer
Jinghao Zhou
Chen Wei
Huiyu Wang
Wei Shen
Cihang Xie
Alan Yuille
Tao Kong
88
743
0
15 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViTTPM
480
7,837
0
11 Nov 2021
Reducing Label Effort: Self-Supervised meets Active Learning
Reducing Label Effort: Self-Supervised meets Active Learning
Javad Zolfaghari Bengar
Joost van de Weijer
Bartlomiej Twardowski
Bogdan Raducanu
VLM
86
60
0
25 Aug 2021
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
  in Natural Language Processing
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
Pengfei Liu
Weizhe Yuan
Jinlan Fu
Zhengbao Jiang
Hiroaki Hayashi
Graham Neubig
VLMSyDa
239
4,004
0
28 Jul 2021
BEiT: BERT Pre-Training of Image Transformers
BEiT: BERT Pre-Training of Image Transformers
Hangbo Bao
Li Dong
Songhao Piao
Furu Wei
ViT
297
2,845
0
15 Jun 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
735
6,139
0
29 Apr 2021
An Empirical Study of Training Self-Supervised Vision Transformers
An Empirical Study of Training Self-Supervised Vision Transformers
Xinlei Chen
Saining Xie
Kaiming He
ViT
161
1,873
0
05 Apr 2021
On Statistical Bias In Active Learning: How and When To Fix It
On Statistical Bias In Active Learning: How and When To Fix It
Sebastian Farquhar
Y. Gal
Tom Rainforth
TDIHAI
54
85
0
27 Jan 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
389
6,813
0
23 Dec 2020
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
258
4,076
0
20 Nov 2020
Contextual Diversity for Active Learning
Contextual Diversity for Active Learning
Sharat Agarwal
H. Arora
Saket Anand
Chetan Arora
159
171
0
13 Aug 2020
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCLSSL
281
4,101
0
17 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
417
6,849
0
13 Jun 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
395
18,897
0
13 Feb 2020
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
216
12,136
0
13 Nov 2019
Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
Jordan T. Ash
Chicheng Zhang
A. Krishnamurthy
John Langford
Alekh Agarwal
BDLUQCV
105
777
0
09 Jun 2019
Learning Loss for Active Learning
Learning Loss for Active Learning
Donggeun Yoo
In So Kweon
UQCV
85
663
0
09 May 2019
Bayesian Generative Active Deep Learning
Bayesian Generative Active Deep Learning
Toan M. Tran
Thanh-Toan Do
Ian Reid
G. Carneiro
101
137
0
26 Apr 2019
Variational Adversarial Active Learning
Variational Adversarial Active Learning
Samarth Sinha
Sayna Ebrahimi
Trevor Darrell
GANDRLVLMSSL
140
579
0
31 Mar 2019
Invariant Information Clustering for Unsupervised Image Classification
  and Segmentation
Invariant Information Clustering for Unsupervised Image Classification and Segmentation
Xu Ji
João F. Henriques
Andrea Vedaldi
SSLVLM
102
853
0
17 Jul 2018
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,637
0
01 Sep 2014
1