ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.04128
  4. Cited By
Generative learning for nonlinear dynamics

Generative learning for nonlinear dynamics

7 November 2023
William Gilpin
    AI4CEPINN
ArXiv (abs)PDFHTML

Papers citing "Generative learning for nonlinear dynamics"

47 / 47 papers shown
Title
How more data can hurt: Instability and regularization in next-generation reservoir computing
How more data can hurt: Instability and regularization in next-generation reservoir computing
Yuanzhao Zhang
Edmilson Roque dos Santos
Sean P. Cornelius
153
2
0
28 Jan 2025
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TSAI4CE
111
8
0
07 Oct 2024
Measuring and Controlling Solution Degeneracy across Task-Trained Recurrent Neural Networks
Measuring and Controlling Solution Degeneracy across Task-Trained Recurrent Neural Networks
Ann Huang
Satpreet H. Singh
Flavio Martinelli
Kanaka Rajan
88
0
0
04 Oct 2024
Zero-shot forecasting of chaotic systems
Zero-shot forecasting of chaotic systems
Yuanzhao Zhang
William Gilpin
AI4TS
249
8
0
24 Sep 2024
Machine learning in and out of equilibrium
Machine learning in and out of equilibrium
Shishir Adhikari
Alkan Kabakcciouglu
A. Strang
Deniz Yuret
M. Hinczewski
60
5
0
06 Jun 2023
Complexity-calibrated Benchmarks for Machine Learning Reveal When
  Next-Generation Reservoir Computer Predictions Succeed and Mislead
Complexity-calibrated Benchmarks for Machine Learning Reveal When Next-Generation Reservoir Computer Predictions Succeed and Mislead
Sarah E. Marzen
P. Riechers
James P. Crutchfield
86
2
0
25 Mar 2023
Transformers Learn Shortcuts to Automata
Transformers Learn Shortcuts to Automata
Bingbin Liu
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Cyril Zhang
OffRLLRM
159
178
0
19 Oct 2022
Manifold Interpolating Optimal-Transport Flows for Trajectory Inference
Manifold Interpolating Optimal-Transport Flows for Trajectory Inference
G. Huguet
D. S. Magruder
Alexander Tong
O. Fasina
Manik Kuchroo
Guy Wolf
Smita Krishnaswamy
OTDRL
121
65
0
29 Jun 2022
Decomposed Linear Dynamical Systems (dLDS) for learning the latent
  components of neural dynamics
Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics
Noga Mudrik
Yenho Chen
Eva Yezerets
Christopher Rozell
Adam S. Charles
87
16
0
07 Jun 2022
Fundamental limits to learning closed-form mathematical models from data
Fundamental limits to learning closed-form mathematical models from data
Oscar Fajardo-Fontiveros
I. Reichardt
Harry R. De Los Ríos
Jordi Duch
Marta Sales-Pardo
Roger Guimerà
83
19
0
06 Apr 2022
Training Compute-Optimal Large Language Models
Training Compute-Optimal Large Language Models
Jordan Hoffmann
Sebastian Borgeaud
A. Mensch
Elena Buchatskaya
Trevor Cai
...
Karen Simonyan
Erich Elsen
Jack W. Rae
Oriol Vinyals
Laurent Sifre
AI4TS
211
1,988
0
29 Mar 2022
Data-Driven Modeling and Prediction of Non-Linearizable Dynamics via
  Spectral Submanifolds
Data-Driven Modeling and Prediction of Non-Linearizable Dynamics via Spectral Submanifolds
Mattia Cenedese
Joar Axås
Bastian Bäuerlein
Kerstin Avila
George Haller
81
127
0
13 Jan 2022
On the difficulty of learning chaotic dynamics with RNNs
On the difficulty of learning chaotic dynamics with RNNs
Jonas M. Mikhaeil
Zahra Monfared
Daniel Durstewitz
123
59
0
14 Oct 2021
Chaos as an interpretable benchmark for forecasting and data-driven
  modelling
Chaos as an interpretable benchmark for forecasting and data-driven modelling
W. Gilpin
AI4TS
65
82
0
11 Oct 2021
Data-driven discovery of intrinsic dynamics
Data-driven discovery of intrinsic dynamics
D. Floryan
M. Graham
AI4CE
171
77
0
12 Aug 2021
Multi-Facet Clustering Variational Autoencoders
Multi-Facet Clustering Variational Autoencoders
Fabian Falck
Haoting Zhang
M. Willetts
G. Nicholson
C. Yau
Chris Holmes
DRL
69
44
0
09 Jun 2021
Modern Koopman Theory for Dynamical Systems
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
122
420
0
24 Feb 2021
Forecasting: theory and practice
Forecasting: theory and practice
F. Petropoulos
D. Apiletti
Vassilios Assimakopoulos
M. Z. Babai
Devon K. Barrow
...
J. Arenas
Xiaoqian Wang
R. L. Winkler
Alisa Yusupova
F. Ziel
AI4TS
115
373
0
04 Dec 2020
Do Reservoir Computers Work Best at the Edge of Chaos?
Do Reservoir Computers Work Best at the Edge of Chaos?
T. Carroll
48
63
0
02 Dec 2020
Neural-Symbolic Integration: A Compositional Perspective
Neural-Symbolic Integration: A Compositional Perspective
Efthymia Tsamoura
Loizos Michael
NAI
91
69
0
22 Oct 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
522
2,456
0
18 Oct 2020
Dynamical Variational Autoencoders: A Comprehensive Review
Dynamical Variational Autoencoders: A Comprehensive Review
Laurent Girin
Simon Leglaive
Xiaoyu Bie
Julien Diard
Thomas Hueber
Xavier Alameda-Pineda
BDL
130
219
0
28 Aug 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
  modularity
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
113
193
0
18 Jun 2020
Deep learning to discover and predict dynamics on an inertial manifold
Deep learning to discover and predict dynamics on an inertial manifold
Alec J. Linot
M. Graham
AI4CE
55
75
0
20 Dec 2019
Lift & Learn: Physics-informed machine learning for large-scale
  nonlinear dynamical systems
Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems
E. Qian
Boris Kramer
Benjamin Peherstorfer
Karen E. Willcox
AI4CE
111
267
0
17 Dec 2019
Learning Deterministic Weighted Automata with Queries and
  Counterexamples
Learning Deterministic Weighted Automata with Queries and Counterexamples
Gail Weiss
Yoav Goldberg
Eran Yahav
TPM
93
45
0
30 Oct 2019
DeepONet: Learning nonlinear operators for identifying differential
  equations based on the universal approximation theorem of operators
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,162
0
08 Oct 2019
Learning the Tangent Space of Dynamical Instabilities from Data
Learning the Tangent Space of Dynamical Instabilities from Data
Antoine Blanchard
T. Sapsis
134
8
0
24 Jul 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
260
3,962
0
12 Jul 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINNAI4CE
135
899
0
04 Jun 2019
Augmented Neural ODEs
Augmented Neural ODEs
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
159
634
0
02 Apr 2019
Identifying nonlinear dynamical systems via generative recurrent neural
  networks with applications to fMRI
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
G. Koppe
Hazem Toutounji
P. Kirsch
S. Lis
Daniel Durstewitz
MedIm
71
79
0
19 Feb 2019
Recent Advances in Autoencoder-Based Representation Learning
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OODSSLDRL
83
446
0
12 Dec 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
463
5,176
0
19 Jun 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
83
1,261
0
27 Dec 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
255
5,082
0
02 Nov 2017
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CEBDL
167
361
0
30 Oct 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
51
374
0
12 Oct 2017
Structure and Randomness of Continuous-Time Discrete-Event Processes
Structure and Randomness of Continuous-Time Discrete-Event Processes
Sarah E. Marzen
James P. Crutchfield
43
27
0
16 Apr 2017
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
367
5,390
0
03 Nov 2016
Exponential expressivity in deep neural networks through transient chaos
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
100
596
0
16 Jun 2016
Increasing the Interpretability of Recurrent Neural Networks Using
  Hidden Markov Models
Increasing the Interpretability of Recurrent Neural Networks Using Hidden Markov Models
Viktoriya Krakovna
Finale Doshi-Velez
AI4CE
150
69
0
16 Jun 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
340
4,817
0
04 Jan 2016
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
315
7,035
0
12 Mar 2015
Semi-Supervised Learning with Deep Generative Models
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GANSSLBDL
107
2,746
0
20 Jun 2014
On the Number of Linear Regions of Deep Neural Networks
On the Number of Linear Regions of Deep Neural Networks
Guido Montúfar
Razvan Pascanu
Kyunghyun Cho
Yoshua Bengio
98
1,256
0
08 Feb 2014
Testing the Manifold Hypothesis
Testing the Manifold Hypothesis
Charles Fefferman
S. Mitter
Hariharan Narayanan
170
537
0
01 Oct 2013
1