Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.04128
Cited By
Generative learning for nonlinear dynamics
7 November 2023
William Gilpin
AI4CE
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Generative learning for nonlinear dynamics"
47 / 47 papers shown
Title
How more data can hurt: Instability and regularization in next-generation reservoir computing
Yuanzhao Zhang
Edmilson Roque dos Santos
Sean P. Cornelius
153
2
0
28 Jan 2025
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TS
AI4CE
111
8
0
07 Oct 2024
Measuring and Controlling Solution Degeneracy across Task-Trained Recurrent Neural Networks
Ann Huang
Satpreet H. Singh
Flavio Martinelli
Kanaka Rajan
88
0
0
04 Oct 2024
Zero-shot forecasting of chaotic systems
Yuanzhao Zhang
William Gilpin
AI4TS
249
8
0
24 Sep 2024
Machine learning in and out of equilibrium
Shishir Adhikari
Alkan Kabakcciouglu
A. Strang
Deniz Yuret
M. Hinczewski
60
5
0
06 Jun 2023
Complexity-calibrated Benchmarks for Machine Learning Reveal When Next-Generation Reservoir Computer Predictions Succeed and Mislead
Sarah E. Marzen
P. Riechers
James P. Crutchfield
86
2
0
25 Mar 2023
Transformers Learn Shortcuts to Automata
Bingbin Liu
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Cyril Zhang
OffRL
LRM
159
178
0
19 Oct 2022
Manifold Interpolating Optimal-Transport Flows for Trajectory Inference
G. Huguet
D. S. Magruder
Alexander Tong
O. Fasina
Manik Kuchroo
Guy Wolf
Smita Krishnaswamy
OT
DRL
121
65
0
29 Jun 2022
Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics
Noga Mudrik
Yenho Chen
Eva Yezerets
Christopher Rozell
Adam S. Charles
87
16
0
07 Jun 2022
Fundamental limits to learning closed-form mathematical models from data
Oscar Fajardo-Fontiveros
I. Reichardt
Harry R. De Los Ríos
Jordi Duch
Marta Sales-Pardo
Roger Guimerà
83
19
0
06 Apr 2022
Training Compute-Optimal Large Language Models
Jordan Hoffmann
Sebastian Borgeaud
A. Mensch
Elena Buchatskaya
Trevor Cai
...
Karen Simonyan
Erich Elsen
Jack W. Rae
Oriol Vinyals
Laurent Sifre
AI4TS
211
1,988
0
29 Mar 2022
Data-Driven Modeling and Prediction of Non-Linearizable Dynamics via Spectral Submanifolds
Mattia Cenedese
Joar Axås
Bastian Bäuerlein
Kerstin Avila
George Haller
81
127
0
13 Jan 2022
On the difficulty of learning chaotic dynamics with RNNs
Jonas M. Mikhaeil
Zahra Monfared
Daniel Durstewitz
123
59
0
14 Oct 2021
Chaos as an interpretable benchmark for forecasting and data-driven modelling
W. Gilpin
AI4TS
65
82
0
11 Oct 2021
Data-driven discovery of intrinsic dynamics
D. Floryan
M. Graham
AI4CE
171
77
0
12 Aug 2021
Multi-Facet Clustering Variational Autoencoders
Fabian Falck
Haoting Zhang
M. Willetts
G. Nicholson
C. Yau
Chris Holmes
DRL
69
44
0
09 Jun 2021
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
122
420
0
24 Feb 2021
Forecasting: theory and practice
F. Petropoulos
D. Apiletti
Vassilios Assimakopoulos
M. Z. Babai
Devon K. Barrow
...
J. Arenas
Xiaoqian Wang
R. L. Winkler
Alisa Yusupova
F. Ziel
AI4TS
115
373
0
04 Dec 2020
Do Reservoir Computers Work Best at the Edge of Chaos?
T. Carroll
48
63
0
02 Dec 2020
Neural-Symbolic Integration: A Compositional Perspective
Efthymia Tsamoura
Loizos Michael
NAI
91
69
0
22 Oct 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
522
2,456
0
18 Oct 2020
Dynamical Variational Autoencoders: A Comprehensive Review
Laurent Girin
Simon Leglaive
Xiaoyu Bie
Julien Diard
Thomas Hueber
Xavier Alameda-Pineda
BDL
130
219
0
28 Aug 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
113
193
0
18 Jun 2020
Deep learning to discover and predict dynamics on an inertial manifold
Alec J. Linot
M. Graham
AI4CE
55
75
0
20 Dec 2019
Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems
E. Qian
Boris Kramer
Benjamin Peherstorfer
Karen E. Willcox
AI4CE
111
267
0
17 Dec 2019
Learning Deterministic Weighted Automata with Queries and Counterexamples
Gail Weiss
Yoav Goldberg
Eran Yahav
TPM
93
45
0
30 Oct 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,162
0
08 Oct 2019
Learning the Tangent Space of Dynamical Instabilities from Data
Antoine Blanchard
T. Sapsis
134
8
0
24 Jul 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
260
3,962
0
12 Jul 2019
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
135
899
0
04 Jun 2019
Augmented Neural ODEs
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
159
634
0
02 Apr 2019
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
G. Koppe
Hazem Toutounji
P. Kirsch
S. Lis
Daniel Durstewitz
MedIm
71
79
0
19 Feb 2019
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OOD
SSL
DRL
83
446
0
12 Dec 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
463
5,176
0
19 Jun 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
83
1,261
0
27 Dec 2017
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
255
5,082
0
02 Nov 2017
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
167
361
0
30 Oct 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
51
374
0
12 Oct 2017
Structure and Randomness of Continuous-Time Discrete-Event Processes
Sarah E. Marzen
James P. Crutchfield
43
27
0
16 Apr 2017
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
367
5,390
0
03 Nov 2016
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
100
596
0
16 Jun 2016
Increasing the Interpretability of Recurrent Neural Networks Using Hidden Markov Models
Viktoriya Krakovna
Finale Doshi-Velez
AI4CE
150
69
0
16 Jun 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
340
4,817
0
04 Jan 2016
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
315
7,035
0
12 Mar 2015
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GAN
SSL
BDL
107
2,746
0
20 Jun 2014
On the Number of Linear Regions of Deep Neural Networks
Guido Montúfar
Razvan Pascanu
Kyunghyun Cho
Yoshua Bengio
98
1,256
0
08 Feb 2014
Testing the Manifold Hypothesis
Charles Fefferman
S. Mitter
Hariharan Narayanan
170
537
0
01 Oct 2013
1