ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.02922
  4. Cited By
Truly Scale-Equivariant Deep Nets with Fourier Layers

Truly Scale-Equivariant Deep Nets with Fourier Layers

6 November 2023
Md Ashiqur Rahman
Raymond A. Yeh
ArXivPDFHTML

Papers citing "Truly Scale-Equivariant Deep Nets with Fourier Layers"

13 / 13 papers shown
Title
AdS-GNN -- a Conformally Equivariant Graph Neural Network
AdS-GNN -- a Conformally Equivariant Graph Neural Network
Maksim Zhdanov
Nabil Iqbal
Erik Bekkers
Patrick Forré
30
1
0
19 May 2025
Group Downsampling with Equivariant Anti-aliasing
Group Downsampling with Equivariant Anti-aliasing
Md Ashiqur Rahman
Raymond A. Yeh
86
1
0
24 Apr 2025
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
Theodoros Kouzelis
Ioannis Kakogeorgiou
Spyros Gidaris
N. Komodakis
DRL
102
6
0
17 Feb 2025
$SE(3)$ Equivariant Ray Embeddings for Implicit Multi-View Depth
  Estimation
SE(3)SE(3)SE(3) Equivariant Ray Embeddings for Implicit Multi-View Depth Estimation
Yinshuang Xu
Dian Chen
Katherine Liu
Sergey Zakharov
Rares Andrei Ambrus
Kostas Daniilidis
Vitor Campagnolo Guizilini
MDE
48
0
0
11 Nov 2024
Harmformer: Harmonic Networks Meet Transformers for Continuous
  Roto-Translation Equivariance
Harmformer: Harmonic Networks Meet Transformers for Continuous Roto-Translation Equivariance
Tomáš Karella
Adam Harmanec
J. Kotera
Jan Blažek
F. Šroubek
55
1
0
06 Nov 2024
HyperSpace: Hypernetworks for spacing-adaptive image segmentation
HyperSpace: Hypernetworks for spacing-adaptive image segmentation
Samuel Joutard
Maximilian Pietsch
Raphael Prevost
54
3
0
04 Jul 2024
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Hrishikesh Viswanath
Yue Chang
Julius Berner
Julius Berner
Peter Yichen Chen
Aniket Bera
AI4CE
68
2
0
04 Jul 2024
Neural Operators with Localized Integral and Differential Kernels
Neural Operators with Localized Integral and Differential Kernels
Miguel Liu-Schiaffini
Julius Berner
Boris Bonev
Thorsten Kurth
Kamyar Azizzadenesheli
A. Anandkumar
69
22
0
26 Feb 2024
Making Vision Transformers Truly Shift-Equivariant
Making Vision Transformers Truly Shift-Equivariant
Renan A. Rojas-Gomez
Teck-Yian Lim
Minh N. Do
Raymond A. Yeh
ViT
57
7
0
25 May 2023
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
271
2,336
0
18 Oct 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
106
127
0
11 Mar 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH
3DPC
3DV
PINN
261
14,158
0
02 Dec 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
266
3,257
0
24 Nov 2016
1