ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.00966
  4. Cited By
Invariant-Feature Subspace Recovery: A New Class of Provable Domain
  Generalization Algorithms

Invariant-Feature Subspace Recovery: A New Class of Provable Domain Generalization Algorithms

2 November 2023
Haoxiang Wang
Gargi Balasubramaniam
Haozhe Si
Bo Li
Han Zhao
    OOD
ArXiv (abs)PDFHTML

Papers citing "Invariant-Feature Subspace Recovery: A New Class of Provable Domain Generalization Algorithms"

45 / 45 papers shown
Title
Future Gradient Descent for Adapting the Temporal Shifting Data
  Distribution in Online Recommendation Systems
Future Gradient Descent for Adapting the Temporal Shifting Data Distribution in Online Recommendation Systems
Mao Ye
Ruichen Jiang
Haoxiang Wang
Dhruv Choudhary
Xiaocong Du
Bhargav Bhushanam
Aryan Mokhtari
A. Kejariwal
Qiang Liu
TTAOODAI4TS
72
8
0
02 Sep 2022
Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path
  and Beyond
Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond
Haoxiang Wang
Yue Liu
Han Zhao
OODCLL
60
39
0
18 Apr 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
86
339
0
06 Apr 2022
Fine-Tuning can Distort Pretrained Features and Underperform
  Out-of-Distribution
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution
Ananya Kumar
Aditi Raghunathan
Robbie Jones
Tengyu Ma
Percy Liang
OODD
126
683
0
21 Feb 2022
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
  for Out-of-Distribution Generalization
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
71
82
0
14 Feb 2022
Salient ImageNet: How to discover spurious features in Deep Learning?
Salient ImageNet: How to discover spurious features in Deep Learning?
Sahil Singla
Soheil Feizi
AAMLVLM
84
120
0
08 Oct 2021
Beyond Discriminant Patterns: On the Robustness of Decision Rule
  Ensembles
Beyond Discriminant Patterns: On the Robustness of Decision Rule Ensembles
Xin Du
S. Ramamoorthy
W. Duivesteijn
Jin Tian
Mykola Pechenizkiy
58
3
0
21 Sep 2021
Robust fine-tuning of zero-shot models
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
156
739
0
04 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CMLOOD
155
535
0
31 Aug 2021
Just Train Twice: Improving Group Robustness without Training Group
  Information
Just Train Twice: Improving Group Robustness without Training Group Information
Emmy Liu
Behzad Haghgoo
Annie S. Chen
Aditi Raghunathan
Pang Wei Koh
Shiori Sagawa
Percy Liang
Chelsea Finn
OOD
102
562
0
19 Jul 2021
Accuracy on the Line: On the Strong Correlation Between
  Out-of-Distribution and In-Distribution Generalization
Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization
John Miller
Rohan Taori
Aditi Raghunathan
Shiori Sagawa
Pang Wei Koh
Vaishaal Shankar
Percy Liang
Y. Carmon
Ludwig Schmidt
OODDOOD
94
278
0
09 Jul 2021
Iterative Feature Matching: Toward Provable Domain Generalization with
  Logarithmic Environments
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Yining Chen
Elan Rosenfeld
Mark Sellke
Tengyu Ma
Andrej Risteski
OOD
66
33
0
18 Jun 2021
On Invariance Penalties for Risk Minimization
On Invariance Penalties for Risk Minimization
Kia Khezeli
Arno Blaas
Frank Soboczenski
N. Chia
John Kalantari
51
16
0
17 Jun 2021
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient
  Training and Effective Adaptation
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation
Haoxiang Wang
Han Zhao
Yue Liu
95
90
0
16 Jun 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
62
269
0
11 Jun 2021
Invariant Information Bottleneck for Domain Generalization
Invariant Information Bottleneck for Domain Generalization
Yue Liu
Yifei Shen
Yezhen Wang
Wenzhen Zhu
Colorado Reed
Jun Zhang
Dongsheng Li
Kurt Keutzer
Han Zhao
OOD
76
115
0
11 Jun 2021
Towards a Theoretical Framework of Out-of-Distribution Generalization
Towards a Theoretical Framework of Out-of-Distribution Generalization
Haotian Ye
Chuanlong Xie
Tianle Cai
Ruichen Li
Zhenguo Li
Liwei Wang
OODDOOD
103
112
0
08 Jun 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OODAI4CE
254
1,024
0
03 Mar 2021
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
225
1,233
0
02 Mar 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
270
128
0
04 Jan 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
230
1,445
0
14 Dec 2020
Empirical or Invariant Risk Minimization? A Sample Complexity
  Perspective
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
83
79
0
30 Oct 2020
The Risks of Invariant Risk Minimization
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
88
312
0
12 Oct 2020
Learning explanations that are hard to vary
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
71
187
0
01 Sep 2020
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
94
1,157
0
02 Jul 2020
Learning Causal Models Online
Learning Causal Models Online
Khurram Javed
Martha White
Yoshua Bengio
CML
53
33
0
12 Jun 2020
Domain Adaptation with Conditional Distribution Matching and Generalized
  Label Shift
Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift
Rémi Tachet des Combes
Han Zhao
Yu Wang
Geoffrey J. Gordon
OODAAMLVLM
76
190
0
10 Mar 2020
Invariant Risk Minimization Games
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
76
251
0
11 Feb 2020
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
108
1,248
0
20 Nov 2019
Generalizing to unseen domains via distribution matching
Generalizing to unseen domains via distribution matching
Isabela Albuquerque
João Monteiro
Mohammad Javad Darvishi Bayazi
T. Falk
Ioannis Mitliagkas
OOD
79
157
0
03 Nov 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
195
2,246
0
05 Jul 2019
Recognition in Terra Incognita
Recognition in Terra Incognita
Sara Beery
Grant Van Horn
Pietro Perona
97
853
0
13 Jul 2018
Generalizing to Unseen Domains via Adversarial Data Augmentation
Generalizing to Unseen Domains via Adversarial Data Augmentation
Riccardo Volpi
Hongseok Namkoong
Ozan Sener
John C. Duchi
Vittorio Murino
Silvio Savarese
OOD
122
786
0
30 May 2018
Annotation Artifacts in Natural Language Inference Data
Annotation Artifacts in Natural Language Inference Data
Suchin Gururangan
Swabha Swayamdipta
Omer Levy
Roy Schwartz
Samuel R. Bowman
Noah A. Smith
155
1,180
0
06 Mar 2018
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup
  Fairness
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
FaML
199
784
0
14 Nov 2017
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Judy Hoffman
Eric Tzeng
Taesung Park
Jun-Yan Zhu
Phillip Isola
Kate Saenko
Alexei A. Efros
Trevor Darrell
147
3,005
0
08 Nov 2017
A Broad-Coverage Challenge Corpus for Sentence Understanding through
  Inference
A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference
Adina Williams
Nikita Nangia
Samuel R. Bowman
524
4,497
0
18 Apr 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
829
11,952
0
09 Mar 2017
Adversarial Discriminative Domain Adaptation
Adversarial Discriminative Domain Adaptation
Eric Tzeng
Judy Hoffman
Kate Saenko
Trevor Darrell
GANOOD
270
4,673
0
17 Feb 2017
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
105
3,170
0
06 Jul 2016
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GANOOD
390
9,524
0
28 May 2015
Learning Transferable Features with Deep Adaptation Networks
Learning Transferable Features with Deep Adaptation Networks
Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
OOD
223
5,211
0
10 Feb 2015
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
124
974
0
06 Jan 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,429
0
28 Nov 2014
Domain Generalization via Invariant Feature Representation
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
David Balduzzi
Bernhard Schölkopf
OOD
142
1,188
0
10 Jan 2013
1