ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.08200
17
37

Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond

18 April 2022
Haoxiang Wang
Bo-wen Li
Han Zhao
    OOD
    CLL
ArXivPDFHTML
Abstract

The vast majority of existing algorithms for unsupervised domain adaptation (UDA) focus on adapting from a labeled source domain to an unlabeled target domain directly in a one-off way. Gradual domain adaptation (GDA), on the other hand, assumes a path of (T−1)(T-1)(T−1) unlabeled intermediate domains bridging the source and target, and aims to provide better generalization in the target domain by leveraging the intermediate ones. Under certain assumptions, Kumar et al. (2020) proposed a simple algorithm, Gradual Self-Training, along with a generalization bound in the order of eO(T)(ε0+O(log(T)/n))e^{O(T)} \left(\varepsilon_0+O\left(\sqrt{log(T)/n}\right)\right)eO(T)(ε0​+O(log(T)/n​)) for the target domain error, where ε0\varepsilon_0ε0​ is the source domain error and nnn is the data size of each domain. Due to the exponential factor, this upper bound becomes vacuous when TTT is only moderately large. In this work, we analyze gradual self-training under more general and relaxed assumptions, and prove a significantly improved generalization bound as ε0+O(TΔ+T/n)+O~(1/nT)\varepsilon_0+ O \left(T\Delta + T/\sqrt{n}\right) + \widetilde{O}\left(1/\sqrt{nT}\right)ε0​+O(TΔ+T/n​)+O(1/nT​), where Δ\DeltaΔ is the average distributional distance between consecutive domains. Compared with the existing bound with an exponential dependency on TTT as a multiplicative factor, our bound only depends on TTT linearly and additively. Perhaps more interestingly, our result implies the existence of an optimal choice of TTT that minimizes the generalization error, and it also naturally suggests an optimal way to construct the path of intermediate domains so as to minimize the accumulative path length TΔT\DeltaTΔ between the source and target. To corroborate the implications of our theory, we examine gradual self-training on multiple semi-synthetic and real datasets, which confirms our findings. We believe our insights provide a path forward toward the design of future GDA algorithms.

View on arXiv
Comments on this paper