Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.20579
Cited By
Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks
31 October 2023
Jiayuan Ye
Zhenyu Zhu
Fanghui Liu
Reza Shokri
Volkan Cevher
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks"
45 / 45 papers shown
Title
Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano
Chuan Guo
Alexandre Sablayrolles
Maziar Sanjabi
FedML
53
17
0
24 Oct 2022
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
199
276
0
22 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
Volkan Cevher
77
21
0
15 Sep 2022
When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li
Daogao Liu
Tatsunori Hashimoto
Huseyin A. Inan
Janardhan Kulkarni
Y. Lee
Abhradeep Thakurta
63
57
0
01 Jul 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
83
141
0
15 Jun 2022
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
60
19
0
27 May 2022
Differentially Private Learning with Margin Guarantees
Raef Bassily
M. Mohri
A. Suresh
51
10
0
21 Apr 2022
Optimal Membership Inference Bounds for Adaptive Composition of Sampled Gaussian Mechanisms
Saeed Mahloujifar
Alexandre Sablayrolles
Graham Cormode
S. Jha
59
22
0
12 Apr 2022
Parameters or Privacy: A Provable Tradeoff Between Overparameterization and Membership Inference
Jasper Tan
Blake Mason
Hamid Javadi
Richard G. Baraniuk
FedML
69
20
0
02 Feb 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
86
171
0
13 Jan 2022
Covariate Shift in High-Dimensional Random Feature Regression
Nilesh Tripuraneni
Ben Adlam
Jeffrey Pennington
OOD
45
24
0
16 Nov 2021
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi-An Ma
Tong Zhang
68
16
0
05 Oct 2021
Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings
Raef Bassily
Cristóbal Guzmán
Michael Menart
84
56
0
12 Jul 2021
On the Convergence and Calibration of Deep Learning with Differential Privacy
Zhiqi Bu
Hua Wang
Zongyu Dai
Qi Long
72
31
0
15 Jun 2021
What can linearized neural networks actually say about generalization?
Guillermo Ortiz-Jiménez
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
73
45
0
12 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
50
218
0
26 May 2021
Private Stochastic Convex Optimization: Optimal Rates in
ℓ
1
\ell_1
ℓ
1
Geometry
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
40
94
0
02 Mar 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
57
83
0
21 Dec 2020
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
Basel Alomair
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
507
1,943
0
14 Dec 2020
Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC
Arun Ganesh
Kunal Talwar
FedML
49
41
0
27 Oct 2020
Phase diagram for two-layer ReLU neural networks at infinite-width limit
Yaoyu Zhang
Zhi-Qin John Xu
Zheng Ma
Yaoyu Zhang
69
61
0
15 Jul 2020
Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses
Raef Bassily
Vitaly Feldman
Cristóbal Guzmán
Kunal Talwar
MLT
54
198
0
12 Jun 2020
Neural Kernels Without Tangents
Vaishaal Shankar
Alex Fang
Wenshuo Guo
Sara Fridovich-Keil
Ludwig Schmidt
Jonathan Ragan-Kelley
Benjamin Recht
49
91
0
04 Mar 2020
Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily
Vitaly Feldman
Kunal Talwar
Abhradeep Thakurta
78
246
0
27 Aug 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
92
391
0
30 May 2019
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices
Santosh Vempala
Andre Wibisono
90
269
0
20 Mar 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
211
1,106
0
18 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
205
973
0
24 Jan 2019
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
111
839
0
19 Dec 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
264
1,466
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
214
1,135
0
09 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
227
1,275
0
04 Oct 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
84
392
0
04 Jul 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
273
3,213
0
20 Jun 2018
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
272
4,152
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,155
0
01 Jul 2016
On-Average KL-Privacy and its equivalence to Generalization for Max-Entropy Mechanisms
Yu Wang
Jing Lei
S. Fienberg
48
48
0
08 May 2016
Algorithmic Stability for Adaptive Data Analysis
Raef Bassily
Kobbi Nissim
Adam D. Smith
Thomas Steinke
Uri Stemmer
Jonathan R. Ullman
96
268
0
08 Nov 2015
Train faster, generalize better: Stability of stochastic gradient descent
Moritz Hardt
Benjamin Recht
Y. Singer
116
1,242
0
03 Sep 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
332
18,647
0
06 Feb 2015
Privacy and Statistical Risk: Formalisms and Minimax Bounds
Rina Foygel Barber
John C. Duchi
PILM
67
92
0
15 Dec 2014
Private Empirical Risk Minimization Beyond the Worst Case: The Effect of the Constraint Set Geometry
Kunal Talwar
Abhradeep Thakurta
Li Zhang
73
56
0
20 Nov 2014
Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds
Raef Bassily
Adam D. Smith
Abhradeep Thakurta
FedML
138
371
0
27 May 2014
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
153
576
0
08 Dec 2012
Rényi Divergence and Kullback-Leibler Divergence
T. Erven
P. Harremoes
84
1,341
0
12 Jun 2012
1