Given a trained model and a data sample, membership-inference (MI) attacks predict whether the sample was in the model's training set. A common countermeasure against MI attacks is to utilize differential privacy (DP) during model training to mask the presence of individual examples. While this use of DP is a principled approach to limit the efficacy of MI attacks, there is a gap between the bounds provided by DP and the empirical performance of MI attacks. In this paper, we derive bounds for the \textit{advantage} of an adversary mounting a MI attack, and demonstrate tightness for the widely-used Gaussian mechanism. We further show bounds on the \textit{confidence} of MI attacks. Our bounds are much stronger than those obtained by DP analysis. For example, analyzing a setting of DP-SGD with would obtain an upper bound on the advantage of based on our analyses, while getting bound of using the analysis of previous work that convert to membership inference bounds. Finally, using our analysis, we provide MI metrics for models trained on CIFAR10 dataset. To the best of our knowledge, our analysis provides the state-of-the-art membership inference bounds for the privacy.
View on arXiv