Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.11011
Cited By
v1
v2 (latest)
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
17 October 2023
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CML
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling"
50 / 51 papers shown
Title
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
268
22
0
28 Feb 2024
High Fidelity Image Counterfactuals with Probabilistic Causal Models
Fabio De Sousa Ribeiro
Tian Xia
M. Monteiro
Nick Pawlowski
Ben Glocker
DiffM
80
39
0
27 Jun 2023
Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms
Aneesh Komanduri
Yongkai Wu
Feng Chen
Xintao Wu
CML
OOD
66
10
0
02 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
125
64
0
01 Jun 2023
Measuring axiomatic soundness of counterfactual image models
M. Monteiro
Fabio De Sousa Ribeiro
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
106
29
0
02 Mar 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
119
11
0
29 Jan 2023
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
68
20
0
06 Jun 2022
Causal Machine Learning for Healthcare and Precision Medicine
Pedro Sanchez
J. Voisey
Tian Xia
Hannah I. Watson
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
CML
82
119
0
23 May 2022
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
69
46
0
01 Apr 2022
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OOD
CML
88
131
0
30 Mar 2022
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
110
58
0
29 Mar 2022
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
85
75
0
21 Feb 2022
Privacy-preserving Generative Framework Against Membership Inference Attacks
Ruikang Yang
Jianfeng Ma
Yinbin Miao
Xindi Ma
44
5
0
11 Feb 2022
A Style and Semantic Memory Mechanism for Domain Generalization
Yang Chen
Yu Wang
Yingwei Pan
Ting Yao
Xinmei Tian
Tao Mei
60
42
0
14 Dec 2021
Diffusion Autoencoders: Toward a Meaningful and Decodable Representation
Konpat Preechakul
Nattanat Chatthee
Suttisak Wizadwongsa
Supasorn Suwajanakorn
SyDa
DiffM
121
434
0
30 Nov 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
58
84
0
08 Sep 2021
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
57
72
0
22 Jul 2021
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CML
OOD
90
140
0
21 Jul 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
80
18
0
30 Jun 2021
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
68
102
0
09 Jun 2021
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
99
317
0
08 Jun 2021
Diffusion-Based Representation Learning
K. Abstreiter
Sarthak Mittal
Stefan Bauer
Bernhard Schölkopf
Arash Mehrjou
DiffM
77
58
0
29 May 2021
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
265
7,938
0
11 May 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
115
303
0
03 Mar 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
353
6,566
0
26 Nov 2020
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
83
110
0
04 Nov 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
289
7,469
0
06 Oct 2020
GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators
Dingfan Chen
Tribhuvanesh Orekondy
Mario Fritz
SyDa
56
185
0
15 Jun 2020
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
89
337
0
12 Jun 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
242
320
0
07 Feb 2020
DP-CGAN: Differentially Private Synthetic Data and Label Generation
Reihaneh Torkzadehmahani
Peter Kairouz
B. Paten
SyDa
72
238
0
27 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
209
1,713
0
05 Dec 2019
Masked Gradient-Based Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
CML
119
117
0
18 Oct 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
195
2,242
0
05 Jul 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
102
138
0
07 Jun 2019
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaML
DRL
73
227
0
31 May 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
82
489
0
22 Apr 2019
Counterfactual Visual Explanations
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
CML
80
512
0
16 Apr 2019
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
133
162
0
31 Oct 2018
FairGAN: Fairness-aware Generative Adversarial Networks
Depeng Xu
Shuhan Yuan
Lu Zhang
Xintao Wu
GAN
111
315
0
28 May 2018
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OOD
CML
97
331
0
22 May 2018
Differentially Private Generative Adversarial Network
Liyang Xie
Kaixiang Lin
Shu Wang
Fei Wang
Jiayu Zhou
SyDa
92
501
0
19 Feb 2018
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
64
1,356
0
16 Feb 2018
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
Murat Kocaoglu
Christopher Snyder
A. Dimakis
S. Vishwanath
GAN
OOD
84
256
0
06 Sep 2017
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
BDL
OOD
DRL
56
314
0
24 May 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,162
0
01 Jul 2016
The Variational Fair Autoencoder
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
223
636
0
03 Nov 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
306
7,016
0
12 Mar 2015
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,426
0
28 Nov 2014
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
94
612
0
27 Jun 2012
1
2
Next