Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.09266
Cited By
User Inference Attacks on Large Language Models
13 October 2023
Nikhil Kandpal
Krishna Pillutla
Alina Oprea
Peter Kairouz
Christopher A. Choquette-Choo
Zheng Xu
SILM
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"User Inference Attacks on Large Language Models"
17 / 17 papers shown
Title
ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models
Linkang Du
Zheng Zhu
M. Chen
Zhou Su
S. Ji
Peng Cheng
Jiming Chen
Zhikun Zhang
DiffM
WIGM
MLAU
68
0
0
17 Apr 2025
Language Models May Verbatim Complete Text They Were Not Explicitly Trained On
Ken Ziyu Liu
Christopher A. Choquette-Choo
Matthew Jagielski
Peter Kairouz
Sanmi Koyejo
Percy Liang
Nicolas Papernot
55
0
0
21 Mar 2025
Privacy Auditing of Large Language Models
Ashwinee Panda
Xinyu Tang
Milad Nasr
Christopher A. Choquette-Choo
Prateek Mittal
PILM
62
5
0
09 Mar 2025
Synthetic Data Privacy Metrics
Amy Steier
Lipika Ramaswamy
Andre Manoel
Alexa Haushalter
43
0
0
08 Jan 2025
Federated Learning in Practice: Reflections and Projections
Katharine Daly
Hubert Eichner
Peter Kairouz
H. B. McMahan
Daniel Ramage
Zheng Xu
FedML
53
5
0
11 Oct 2024
Range Membership Inference Attacks
Jiashu Tao
Reza Shokri
42
1
0
09 Aug 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
36
11
0
10 Jul 2024
Large language models in 6G security: challenges and opportunities
Tri Nguyen
Huong Nguyen
Ahmad Ijaz
Saeid Sheikhi
Athanasios V. Vasilakos
Panos Kostakos
ELM
28
8
0
18 Mar 2024
Do Membership Inference Attacks Work on Large Language Models?
Michael Duan
Anshuman Suri
Niloofar Mireshghallah
Sewon Min
Weijia Shi
Luke Zettlemoyer
Yulia Tsvetkov
Yejin Choi
David E. Evans
Hanna Hajishirzi
MIALM
39
79
0
12 Feb 2024
OpenFedLLM: Training Large Language Models on Decentralized Private Data via Federated Learning
Rui Ye
Wenhao Wang
Jingyi Chai
Dihan Li
Zexi Li
Yinda Xu
Yaxin Du
Yanfeng Wang
Siheng Chen
ALM
FedML
AIFin
11
76
0
10 Feb 2024
SoK: Memorization in General-Purpose Large Language Models
Valentin Hartmann
Anshuman Suri
Vincent Bindschaedler
David E. Evans
Shruti Tople
Robert West
KELM
LLMAG
16
20
0
24 Oct 2023
Students Parrot Their Teachers: Membership Inference on Model Distillation
Matthew Jagielski
Milad Nasr
Christopher A. Choquette-Choo
Katherine Lee
Nicholas Carlini
FedML
41
21
0
06 Mar 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
Deduplicating Training Data Makes Language Models Better
Katherine Lee
Daphne Ippolito
A. Nystrom
Chiyuan Zhang
Douglas Eck
Chris Callison-Burch
Nicholas Carlini
SyDa
242
592
0
14 Jul 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
182
154
0
26 Feb 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
253
1,989
0
31 Dec 2020
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,815
0
14 Dec 2020
1