ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.04063
  4. Cited By
INSURE: An Information Theory Inspired Disentanglement and Purification
  Model for Domain Generalization

INSURE: An Information Theory Inspired Disentanglement and Purification Model for Domain Generalization

8 September 2023
Xi Yu
Huan-Hsin Tseng
Shinjae Yoo
Haibin Ling
Yuewei Lin
    OOD
ArXivPDFHTML

Papers citing "INSURE: An Information Theory Inspired Disentanglement and Purification Model for Domain Generalization"

38 / 38 papers shown
Title
Sharpness-Aware Gradient Matching for Domain Generalization
Sharpness-Aware Gradient Matching for Domain Generalization
Pengfei Wang
Zhaoxiang Zhang
Zhen Lei
Lei Zhang
51
94
0
18 Mar 2023
Intra-Source Style Augmentation for Improved Domain Generalization
Intra-Source Style Augmentation for Improved Domain Generalization
Yumeng Li
Dan Zhang
Margret Keuper
Anna Khoreva
57
33
0
18 Oct 2022
Causality Inspired Representation Learning for Domain Generalization
Causality Inspired Representation Learning for Domain Generalization
Fangrui Lv
Jian Liang
Shuang Li
Bin Zang
Chi Harold Liu
Ziteng Wang
Di Liu
CML
OOD
74
170
0
27 Mar 2022
Towards Principled Disentanglement for Domain Generalization
Towards Principled Disentanglement for Domain Generalization
Hanlin Zhang
Yi-Fan Zhang
Weiyang Liu
Adrian Weller
Bernhard Schölkopf
Eric Xing
OOD
74
117
0
27 Nov 2021
Exploiting Domain-Specific Features to Enhance Domain Generalization
Exploiting Domain-Specific Features to Enhance Domain Generalization
Manh-Ha Bui
Toan M. Tran
Anh Tran
D.Q. Phung
OOD
69
130
0
18 Oct 2021
Learning to Diversify for Single Domain Generalization
Learning to Diversify for Single Domain Generalization
Zijian Wang
Yadan Luo
Ruihong Qiu
Zi Huang
Mahsa Baktash
92
256
0
26 Aug 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
57
268
0
11 Jun 2021
Invariant Information Bottleneck for Domain Generalization
Invariant Information Bottleneck for Domain Generalization
Yue Liu
Yifei Shen
Yezhen Wang
Wenzhen Zhu
Colorado Reed
Jun Zhang
Dongsheng Li
Kurt Keutzer
Han Zhao
OOD
70
112
0
11 Jun 2021
Farewell to Mutual Information: Variational Distillation for Cross-Modal
  Person Re-Identification
Farewell to Mutual Information: Variational Distillation for Cross-Modal Person Re-Identification
Xudong Tian
Zhizhong Zhang
Shaohui Lin
Yanyun Qu
Yuan Xie
Lizhuang Ma
50
112
0
07 Apr 2021
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
202
1,222
0
02 Mar 2021
SWAD: Domain Generalization by Seeking Flat Minima
SWAD: Domain Generalization by Seeking Flat Minima
Junbum Cha
Sanghyuk Chun
Kyungjae Lee
Han-Cheol Cho
Seunghyun Park
Yunsung Lee
Sungrae Park
MoMe
278
452
0
17 Feb 2021
CrossNorm and SelfNorm for Generalization under Distribution Shifts
CrossNorm and SelfNorm for Generalization under Distribution Shifts
Zhiqiang Tang
Yunhe Gao
Yi Zhu
Zhi-Li Zhang
Mu Li
Dimitris N. Metaxas
OOD
47
52
0
04 Feb 2021
Learning Disentangled Semantic Representation for Domain Adaptation
Learning Disentangled Semantic Representation for Domain Adaptation
Ruichu Cai
Zijian Li
Pengfei Wei
Jie Qiao
Kun Zhang
Zhifeng Hao
OOD
DRL
62
130
0
22 Dec 2020
Multi-Domain Adversarial Feature Generalization for Person
  Re-Identification
Multi-Domain Adversarial Feature Generalization for Person Re-Identification
Shan Lin
Chang-Tsun Li
Alex C. Kot
OOD
45
60
0
25 Nov 2020
Maximum-Entropy Adversarial Data Augmentation for Improved
  Generalization and Robustness
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OOD
AAML
94
168
0
15 Oct 2020
Heterogeneous Domain Generalization via Domain Mixup
Heterogeneous Domain Generalization via Domain Mixup
Yufei Wang
Haoliang Li
Alex C. Kot
OOD
52
144
0
11 Sep 2020
Estimating Generalization under Distribution Shifts via Domain-Invariant
  Representations
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations
Ching-Yao Chuang
Antonio Torralba
Stefanie Jegelka
OOD
29
62
0
06 Jul 2020
Self-Challenging Improves Cross-Domain Generalization
Self-Challenging Improves Cross-Domain Generalization
Zeyi Huang
Haohan Wang
Eric Xing
Dong Huang
OOD
87
631
0
05 Jul 2020
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
76
1,143
0
02 Jul 2020
Feature Alignment and Restoration for Domain Generalization and
  Adaptation
Feature Alignment and Restoration for Domain Generalization and Adaptation
Xin Jin
Cuiling Lan
Wenjun Zeng
Zhibo Chen
OOD
69
40
0
22 Jun 2020
Frustratingly Simple Domain Generalization via Image Stylization
Frustratingly Simple Domain Generalization via Image Stylization
Nathan Somavarapu
Chih-Yao Ma
Z. Kira
OOD
51
65
0
19 Jun 2020
Domain Adaptive Ensemble Learning
Domain Adaptive Ensemble Learning
Kaiyang Zhou
Yongxin Yang
Yu Qiao
Tao Xiang
OOD
192
278
0
16 Mar 2020
Improve Unsupervised Domain Adaptation with Mixup Training
Improve Unsupervised Domain Adaptation with Mixup Training
Shen Yan
Huan Song
Nanxiang Li
Lincan Zou
Liu Ren
68
234
0
03 Jan 2020
Adversarial Domain Adaptation with Domain Mixup
Adversarial Domain Adaptation with Domain Mixup
Minghao Xu
Jian Zhang
Bingbing Ni
Teng Li
Chengjie Wang
Qi Tian
Wenjun Zhang
52
448
0
04 Dec 2019
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
91
1,237
0
20 Nov 2019
Domain Generalization via Multidomain Discriminant Analysis
Domain Generalization via Multidomain Discriminant Analysis
Shoubo Hu
Kun Zhang
Zhitang Chen
L. Chan
OOD
AI4CE
66
109
0
25 Jul 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
65
201
0
24 May 2019
Domain Agnostic Learning with Disentangled Representations
Domain Agnostic Learning with Disentangled Representations
Xingchao Peng
Zijun Huang
Ximeng Sun
Kate Saenko
OOD
DRL
70
264
0
28 Apr 2019
Support and Invertibility in Domain-Invariant Representations
Support and Invertibility in Domain-Invariant Representations
Fredrik D. Johansson
David Sontag
Rajesh Ranganath
63
162
0
08 Mar 2019
Domain Randomization for Scene-Specific Car Detection and Pose
  Estimation
Domain Randomization for Scene-Specific Car Detection and Pose Estimation
Rawal Khirodkar
Donghyun Yoo
Kris Kitani
3DPC
55
50
0
14 Nov 2018
Generalizing to Unseen Domains via Adversarial Data Augmentation
Generalizing to Unseen Domains via Adversarial Data Augmentation
Riccardo Volpi
Hongseok Namkoong
Ozan Sener
John C. Duchi
Vittorio Murino
Silvio Savarese
OOD
119
784
0
30 May 2018
Domain Generalization by Marginal Transfer Learning
Domain Generalization by Marginal Transfer Learning
Gilles Blanchard
A. Deshmukh
Ürün Dogan
Gyemin Lee
Clayton Scott
OOD
85
285
0
21 Nov 2017
Learning to Generalize: Meta-Learning for Domain Generalization
Learning to Generalize: Meta-Learning for Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
91
1,422
0
10 Oct 2017
Deep Hashing Network for Unsupervised Domain Adaptation
Deep Hashing Network for Unsupervised Domain Adaptation
Hemanth Venkateswara
José Eusébio
Shayok Chakraborty
S. Panchanathan
OOD
138
2,042
0
22 Jun 2017
Domain Randomization for Transferring Deep Neural Networks from
  Simulation to the Real World
Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World
Joshua Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
244
2,964
0
20 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
282
19,981
0
07 Oct 2016
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
97
3,151
0
06 Jul 2016
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
366
9,484
0
28 May 2015
1