ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.02881
  4. Cited By
Probabilistic and Semantic Descriptions of Image Manifolds and Their
  Applications
v1v2v3v4v5 (latest)

Probabilistic and Semantic Descriptions of Image Manifolds and Their Applications

6 July 2023
Peter Tu
Zhaoyuan Yang
Leonid Sigal
Zhiwei Xu
Jing Zhang
Yiwei Fu
Dylan Campbell
Jaskirat Singh
Tianyu Wang
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Probabilistic and Semantic Descriptions of Image Manifolds and Their Applications"

30 / 30 papers shown
Title
Adversarial Purification with the Manifold Hypothesis
Adversarial Purification with the Manifold Hypothesis
Zhaoyuan Yang
Zhiwei Xu
Jing Zhang
Leonid Sigal
Peter Tu
AAML
67
5
0
26 Oct 2022
Sliced-Wasserstein normalizing flows: beyond maximum likelihood training
Sliced-Wasserstein normalizing flows: beyond maximum likelihood training
Florentin Coeurdoux
N. Dobigeon
P. Chainais
TPM
33
6
0
12 Jul 2022
Diffusion Normalizing Flow
Diffusion Normalizing Flow
Qinsheng Zhang
Yongxin Chen
DiffM
72
93
0
14 Oct 2021
Hierarchical Conditional Flow: A Unified Framework for Image
  Super-Resolution and Image Rescaling
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling
Christos Sakaridis
Andreas Lugmayr
Peng Sun
Martin Danelljan
Luc Van Gool
Radu Timofte
89
105
0
11 Aug 2021
Emergent Discrete Communication in Semantic Spaces
Emergent Discrete Communication in Semantic Spaces
Mycal Tucker
Huao Li
Siddharth Agrawal
Dana Hughes
Katia Sycara
Michael Lewis
J. Shah
50
29
0
04 Aug 2021
Multi-Resolution Continuous Normalizing Flows
Multi-Resolution Continuous Normalizing Flows
Vikram S. Voleti
Chris Finlay
Adam M. Oberman
Christopher Pal
37
4
0
15 Jun 2021
The Intrinsic Dimension of Images and Its Impact on Learning
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
231
273
0
18 Apr 2021
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
418
4,996
0
24 Feb 2021
Dual Contradistinctive Generative Autoencoder
Dual Contradistinctive Generative Autoencoder
Gaurav Parmar
Dacheng Li
Kwonjoon Lee
Zhuowen Tu
GAN
56
82
0
19 Nov 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLMDiffM
289
7,469
0
06 Oct 2020
RG-Flow: A hierarchical and explainable flow model based on
  renormalization group and sparse prior
RG-Flow: A hierarchical and explainable flow model based on renormalization group and sparse prior
Hong-Ye Hu
Dian Wu
Yi-Zhuang You
Bruno A. Olshausen
Yubei Chen
BDLDRL
71
15
0
30 Sep 2020
Compositionality and Generalization in Emergent Languages
Compositionality and Generalization in Emergent Languages
Rahma Chaabouni
Eugene Kharitonov
Diane Bouchacourt
Emmanuel Dupoux
Marco Baroni
CoGeAI4CE
83
139
0
20 Apr 2020
Guided Variational Autoencoder for Disentanglement Learning
Guided Variational Autoencoder for Disentanglement Learning
Zheng Ding
Yifan Xu
Weijian Xu
Gaurav Parmar
Yang Yang
Max Welling
Zhuowen Tu
DRLCoGe
61
108
0
02 Apr 2020
CNN-generated images are surprisingly easy to spot... for now
CNN-generated images are surprisingly easy to spot... for now
Sheng-Yu Wang
Oliver Wang
Richard Y. Zhang
Andrew Owens
Alexei A. Efros
OOD
154
987
0
23 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
209
1,713
0
05 Dec 2019
Normalizing Flows: An Introduction and Review of Current Methods
Normalizing Flows: An Introduction and Review of Current Methods
I. Kobyzev
S. Prince
Marcus A. Brubaker
TPMMedIm
86
58
0
25 Aug 2019
Geometry-Aware Maximum Likelihood Estimation of Intrinsic Dimension
Geometry-Aware Maximum Likelihood Estimation of Intrinsic Dimension
Marina Gomtsyan
N. Mokrov
Maxim Panov
Y. Yanovich
46
17
0
12 Apr 2019
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
300
3,141
0
09 Jul 2018
Exploring Disentangled Feature Representation Beyond Face Identification
Exploring Disentangled Feature Representation Beyond Face Identification
Yu Liu
Fangyin Wei
Jing Shao
Lu Sheng
Junjie Yan
Xiaogang Wang
CoGeCVBM
55
156
0
10 Apr 2018
Isolating Sources of Disentanglement in Variational Autoencoders
Isolating Sources of Disentanglement in Variational Autoencoders
T. Chen
Xuechen Li
Roger C. Grosse
David Duvenaud
DRL
61
447
0
14 Feb 2018
Adversarial Patch
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
91
1,097
0
27 Dec 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
315
12,131
0
19 Jun 2017
Emergence of Language with Multi-agent Games: Learning to Communicate
  with Sequences of Symbols
Emergence of Language with Multi-agent Games: Learning to Communicate with Sequences of Symbols
Serhii Havrylov
Ivan Titov
LLMAG
82
288
0
31 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,729
0
19 May 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
268
8,583
0
16 Aug 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
318
4,196
0
21 May 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
3DH
388
13,145
0
12 Mar 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,426
0
28 Nov 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
1