ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.09739
  4. Cited By
Stabilized Neural Differential Equations for Learning Dynamics with
  Explicit Constraints
v1v2v3 (latest)

Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints

16 June 2023
Alistair J R White
Niki Kilbertus
Maximilian Gelbrecht
Niklas Boers
ArXiv (abs)PDFHTML

Papers citing "Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints"

26 / 26 papers shown
Title
Predicting Ordinary Differential Equations with Transformers
Predicting Ordinary Differential Equations with Transformers
Soren Becker
M. Klein
Alexander Neitz
Giambattista Parascandolo
Niki Kilbertus
76
17
0
24 Jul 2023
Sparsity in Continuous-Depth Neural Networks
Sparsity in Continuous-Depth Neural Networks
H. Aliee
Till Richter
Mikhail Solonin
I. Ibarra
Fabian J. Theis
Niki Kilbertus
72
11
0
26 Oct 2022
NODE IK: Solving Inverse Kinematics with Neural Ordinary Differential
  Equations for Path Planning
NODE IK: Solving Inverse Kinematics with Neural Ordinary Differential Equations for Path Planning
Suhan Park
M. Schwartz
Jaeheung Park
33
7
0
01 Sep 2022
Differentiable Programming for Earth System Modeling
Differentiable Programming for Earth System Modeling
Maximilian Gelbrecht
Alistair J R White
S. Bathiany
Niklas Boers
59
19
0
29 Aug 2022
Matching Normalizing Flows and Probability Paths on Manifolds
Matching Normalizing Flows and Probability Paths on Manifolds
Heli Ben-Hamu
Samuel N. Cohen
Joey Bose
Brandon Amos
Aditya Grover
Maximilian Nickel
Ricky T. Q. Chen
Y. Lipman
96
42
0
11 Jul 2022
projUNN: efficient method for training deep networks with unitary
  matrices
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
70
32
0
10 Mar 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
50
41
0
10 Feb 2022
Moser Flow: Divergence-based Generative Modeling on Manifolds
Moser Flow: Divergence-based Generative Modeling on Manifolds
N. Rozen
Aditya Grover
Maximilian Nickel
Y. Lipman
DRLAI4CE
75
60
0
18 Aug 2021
Beyond Predictions in Neural ODEs: Identification and Interventions
Beyond Predictions in Neural ODEs: Identification and Interventions
H. Aliee
Fabian J. Theis
Niki Kilbertus
CML
101
25
0
23 Jun 2021
Universal Approximation Property of Neural Ordinary Differential
  Equations
Universal Approximation Property of Neural Ordinary Differential Equations
Takeshi Teshima
Koichi Tojo
Masahiro Ikeda
Isao Ishikawa
Kenta Oono
70
40
0
04 Dec 2020
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit
  Constraints
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints
Marc Finzi
Ke Alexander Wang
A. Wilson
AI4CE
73
129
0
26 Oct 2020
Learning Differential Equations that are Easy to Solve
Learning Differential Equations that are Easy to Solve
Jacob Kelly
J. Bettencourt
Matthew J. Johnson
David Duvenaud
86
116
0
09 Jul 2020
Riemannian Continuous Normalizing Flows
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
96
126
0
18 Jun 2020
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDLAI4CE
74
81
0
18 Jun 2020
On Second Order Behaviour in Augmented Neural ODEs
On Second Order Behaviour in Augmented Neural ODEs
Alexander Norcliffe
Cristian Bodnar
Ben Day
Nikola Simidjievski
Pietro Lio
73
94
0
12 Jun 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
173
437
0
10 Mar 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
84
157
0
06 Feb 2020
Universal Differential Equations for Scientific Machine Learning
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
91
597
0
13 Jan 2020
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
88
271
0
26 Sep 2019
Approximation Capabilities of Neural ODEs and Invertible Residual
  Networks
Approximation Capabilities of Neural ODEs and Invertible Residual Networks
Han Zhang
Xi Gao
Jacob Unterman
Tom Arodz
74
99
0
30 Jul 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINNAI4CE
118
899
0
04 Jun 2019
Augmented Neural ODEs
Augmented Neural ODEs
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
150
632
0
02 Apr 2019
Cheap Orthogonal Constraints in Neural Networks: A Simple
  Parametrization of the Orthogonal and Unitary Group
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
50
200
0
24 Jan 2019
Fashionable Modelling with Flux
Fashionable Modelling with Flux
Mike Innes
Elliot Saba
Keno Fischer
Dhairya Gandhi
Marco Concetto Rudilosso
Neethu Mariya Joy
Tejan Karmali
Avik Pal
Viral B. Shah
AI4CE
79
164
0
01 Nov 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
429
5,157
0
19 Jun 2018
Unitary Evolution Recurrent Neural Networks
Unitary Evolution Recurrent Neural Networks
Martín Arjovsky
Amar Shah
Yoshua Bengio
ODL
75
771
0
20 Nov 2015
1