Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.18407
Cited By
v1
v2 (latest)
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
28 May 2023
Shengchao Liu
Weitao Du
Zhiming Ma
Hongyu Guo
Jian Tang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining"
18 / 68 papers shown
Title
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
462
6,864
0
13 Jun 2020
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DV
AI4CE
120
222
0
09 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
311
2,762
0
02 May 2020
Principal Neighbourhood Aggregation for Graph Nets
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lio
Petar Velickovic
GNN
164
678
0
12 Apr 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
108
289
0
08 Feb 2020
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
SSL
177
868
0
31 Jul 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
268
3,971
0
12 Jul 2019
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSL
AI4CE
133
1,419
0
29 May 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
289
7,726
0
01 Oct 2018
Deep Graph Infomax
Petar Velickovic
W. Fedus
William L. Hamilton
Pietro Lio
Yoshua Bengio
R. Devon Hjelm
GNN
134
2,409
0
27 Sep 2018
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSL
DRL
399
2,677
0
20 Aug 2018
Representation Learning with Contrastive Predictive Coding
Aaron van den Oord
Yazhe Li
Oriol Vinyals
DRL
SSL
360
10,385
0
10 Jul 2018
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
Shengchao Liu
M. F. Demirel
Yingyu Liang
GNN
NAI
67
197
0
24 Jun 2018
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
135
980
0
22 Feb 2018
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
604
7,512
0
04 Apr 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
358
1,846
0
02 Mar 2017
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
222
2,954
0
07 Oct 2016
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
347
7,048
0
12 Mar 2015
Previous
1
2