ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.16174
  4. Cited By
From Latent Graph to Latent Topology Inference: Differentiable Cell
  Complex Module
v1v2 (latest)

From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module

25 May 2023
Claudio Battiloro
Indro Spinelli
Lev Telyatnikov
Michael M. Bronstein
Simone Scardapane
P. Lorenzo
    BDL
ArXiv (abs)PDFHTML

Papers citing "From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module"

46 / 46 papers shown
Title
E(n) Equivariant Topological Neural Networks
E(n) Equivariant Topological Neural Networks
Claudio Battiloro
Ege Karaismailoglu
Mauricio Tec
George Dasoulas
Michelle Audirac
Francesca Dominici
103
9
0
24 May 2024
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
166
5
0
23 Oct 2023
Architectures of Topological Deep Learning: A Survey of Message-Passing
  Topological Neural Networks
Architectures of Topological Deep Learning: A Survey of Message-Passing Topological Neural Networks
Mathilde Papillon
Sophia Sanborn
Mustafa Hajij
Nina Miolane
3DVAI4CE
73
36
0
20 Apr 2023
Tangent Bundle Convolutional Learning: from Manifolds to Cellular
  Sheaves and Back
Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back
Claudio Battiloro
Zhiyang Wang
Hans Riess
Paolo Di Lorenzo
Alejandro Ribeiro
48
11
0
20 Mar 2023
Convolutional Learning on Simplicial Complexes
Convolutional Learning on Simplicial Complexes
Maosheng Yang
Elvin Isufi
54
21
0
26 Jan 2023
Self-organization Preserved Graph Structure Learning with Principle of
  Relevant Information
Self-organization Preserved Graph Structure Learning with Principle of Relevant Information
Qingyun Sun
Jianxin Li
Beining Yang
Xingcheng Fu
Hao Peng
Philip S. Yu
58
11
0
30 Dec 2022
Latent Graph Inference using Product Manifolds
Latent Graph Inference using Product Manifolds
Haitz Sáez de Ocáriz Borde
Anees Kazi
Federico Barbero
Pietro Lio
BDL
73
19
0
26 Nov 2022
Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular
  Sheaves and Back
Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular Sheaves and Back
Claudio Battiloro
Zhiyang Wang
Hans Riess
P. Lorenzo
Alejandro Ribeiro
71
13
0
26 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
59
7
0
28 Sep 2022
Cell Attention Networks
Cell Attention Networks
Lorenzo Giusti
Claudio Battiloro
Lucia Testa
P. Lorenzo
S. Sardellitti
Sergio Barbarossa
3DPCGNN
373
35
0
16 Sep 2022
Sheaf Neural Networks with Connection Laplacians
Sheaf Neural Networks with Connection Laplacians
Federico Barbero
Cristian Bodnar
Haitz Sáez de Ocáriz Borde
Michael M. Bronstein
Petar Velivcković
Pietro Lio
61
43
0
17 Jun 2022
Topological Deep Learning: Going Beyond Graph Data
Topological Deep Learning: Going Beyond Graph Data
Mustafa Hajij
Ghada Zamzmi
Theodore Papamarkou
Nina Miolane
Aldo Guzmán-Sáenz
...
Shreyas N. Samaga
Neal Livesay
Robin Walters
Paul Rosen
Michael T. Schaub
PINNGNNAI4CE
62
65
0
01 Jun 2022
Simplicial Attention Networks
Simplicial Attention Networks
Christopher Wei Jin Goh
Cristian Bodnar
Pietro Lio
GNN
80
40
0
20 Apr 2022
Simplicial Attention Neural Networks
Simplicial Attention Neural Networks
L. Giusti
Claudio Battiloro
P. Lorenzo
S. Sardellitti
Sergio Barbarossa
103
33
0
14 Mar 2022
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and
  Oversmoothing in GNNs
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Cristian Bodnar
Francesco Di Giovanni
B. Chamberlain
Pietro Lio
Michael M. Bronstein
85
180
0
09 Feb 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
108
444
0
29 Nov 2021
Signal Processing on Cell Complexes
Signal Processing on Cell Complexes
T. Roddenberry
Michael T. Schaub
Mustafa Hajij
51
43
0
11 Oct 2021
Weisfeiler and Lehman Go Cellular: CW Networks
Weisfeiler and Lehman Go Cellular: CW Networks
Cristian Bodnar
Fabrizio Frasca
N. Otter
Yu Guang Wang
Pietro Lio
Guido Montúfar
M. Bronstein
GNN
70
236
0
23 Jun 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family
  Distributions
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Mathias Niepert
Pasquale Minervini
Luca Franceschi
62
85
0
03 Jun 2021
Neural Algorithmic Reasoning
Neural Algorithmic Reasoning
Petar Velickovic
Charles Blundell
NAIOOD
41
101
0
06 May 2021
FairDrop: Biased Edge Dropout for Enhancing Fairness in Graph
  Representation Learning
FairDrop: Biased Edge Dropout for Enhancing Fairness in Graph Representation Learning
Indro Spinelli
Simone Scardapane
Amir Hussain
A. Uncini
FaML
57
84
0
29 Apr 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
355
1,153
0
27 Apr 2021
Weisfeiler and Lehman Go Topological: Message Passing Simplicial
  Networks
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lio
M. Bronstein
95
256
0
04 Mar 2021
Principled Simplicial Neural Networks for Trajectory Prediction
Principled Simplicial Neural Networks for Trajectory Prediction
T. Roddenberry
Nicholas Glaze
Santiago Segarra
3DPC
66
93
0
19 Feb 2021
Signal Processing on Higher-Order Networks: Livin' on the Edge ... and
  Beyond
Signal Processing on Higher-Order Networks: Livin' on the Edge ... and Beyond
Michael T. Schaub
Yu Zhu
Jean-Baptiste Seby
T. Roddenberry
Santiago Segarra
151
149
0
14 Jan 2021
Sheaf Neural Networks
Sheaf Neural Networks
J. Hansen
Thomas Gebhart
GNN
43
40
0
08 Dec 2020
Simplicial Neural Networks
Simplicial Neural Networks
Stefania Ebli
M. Defferrard
Gard Spreemann
GNN
49
129
0
07 Oct 2020
Cell Complex Neural Networks
Cell Complex Neural Networks
Mustafa Hajij
Kyle Istvan
Ghada Zamzmi
83
61
0
02 Oct 2020
Iterative Deep Graph Learning for Graph Neural Networks: Better and
  Robust Node Embeddings
Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings
Yu Chen
Lingfei Wu
Mohammed J Zaki
94
416
0
21 Jun 2020
Graph Structure Learning for Robust Graph Neural Networks
Graph Structure Learning for Robust Graph Neural Networks
Wei Jin
Yao Ma
Xiaorui Liu
Xianfeng Tang
Suhang Wang
Jiliang Tang
OODAAML
84
703
0
20 May 2020
Differentiable Graph Module (DGM) for Graph Convolutional Networks
Differentiable Graph Module (DGM) for Graph Convolutional Networks
Anees Kazi
Luca Cosmo
Seyed-Ahmad Ahmadi
Nassir Navab
M. Bronstein
GNNMedIm
65
130
0
11 Feb 2020
Multi-scale Attributed Node Embedding
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
266
861
0
28 Sep 2019
Adaptively Sparse Transformers
Adaptively Sparse Transformers
Gonçalo M. Correia
Vlad Niculae
André F. T. Martins
84
256
0
30 Aug 2019
Sparse Sequence-to-Sequence Models
Sparse Sequence-to-Sequence Models
Ben Peters
Vlad Niculae
André F. T. Martins
TPM
177
213
0
14 May 2019
Learning Discrete Structures for Graph Neural Networks
Learning Discrete Structures for Graph Neural Networks
Luca Franceschi
Mathias Niepert
Massimiliano Pontil
X. He
GNN
72
411
0
28 Mar 2019
Pitfalls of Graph Neural Network Evaluation
Pitfalls of Graph Neural Network Evaluation
Oleksandr Shchur
Maximilian Mumme
Aleksandar Bojchevski
Stephan Günnemann
GNN
168
1,360
0
14 Nov 2018
Implicit Maximum Likelihood Estimation
Implicit Maximum Likelihood Estimation
Ke Li
Jitendra Malik
39
97
0
24 Sep 2018
Learning Classifiers with Fenchel-Young Losses: Generalized Entropies,
  Margins, and Algorithms
Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms
Mathieu Blondel
André F. T. Martins
Vlad Niculae
FedML
39
39
0
24 May 2018
Link Prediction Based on Graph Neural Networks
Link Prediction Based on Graph Neural Networks
Muhan Zhang
Yixin Chen
GNN
98
1,937
0
27 Feb 2018
Dynamic Graph CNN for Learning on Point Clouds
Dynamic Graph CNN for Learning on Point Clouds
Yue Wang
Yongbin Sun
Ziwei Liu
Sanjay E. Sarma
M. Bronstein
Justin Solomon
GNN3DPC
257
6,149
0
24 Jan 2018
VAIN: Attentional Multi-agent Predictive Modeling
VAIN: Attentional Multi-agent Predictive Modeling
Yedid Hoshen
GNN
100
238
0
19 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
701
131,652
0
12 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
644
29,076
0
09 Sep 2016
Revisiting Semi-Supervised Learning with Graph Embeddings
Revisiting Semi-Supervised Learning with Graph Embeddings
Zhilin Yang
William W. Cohen
Ruslan Salakhutdinov
GNNSSL
169
2,095
0
29 Mar 2016
Spectral Networks and Locally Connected Networks on Graphs
Spectral Networks and Locally Connected Networks on Graphs
Joan Bruna
Wojciech Zaremba
Arthur Szlam
Yann LeCun
GNN
220
4,882
0
21 Dec 2013
1