ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.15925
  4. Cited By
On the Identifiability of Switching Dynamical Systems
v1v2v3v4 (latest)

On the Identifiability of Switching Dynamical Systems

25 May 2023
Carles Balsells-Rodas
Yixin Wang
Yingzhen Li
ArXiv (abs)PDFHTML

Papers citing "On the Identifiability of Switching Dynamical Systems"

32 / 32 papers shown
Title
Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
  Actions, Interventions and Sparse Temporal Dependencies
Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse Actions, Interventions and Sparse Temporal Dependencies
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
42
20
0
10 Jan 2024
BISCUIT: Causal Representation Learning from Binary Interactions
BISCUIT: Causal Representation Learning from Binary Interactions
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
66
31
0
16 Jun 2023
Rhino: Deep Causal Temporal Relationship Learning With History-dependent
  Noise
Rhino: Deep Causal Temporal Relationship Learning With History-dependent Noise
Wenbo Gong
Joel Jennings
Chen Zhang
Nick Pawlowski
AI4TSCML
60
26
0
26 Oct 2022
Temporally Disentangled Representation Learning
Temporally Disentangled Representation Learning
Weiran Yao
Guangyi Chen
Kun Zhang
CMLBDLOOD
59
51
0
24 Oct 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
91
52
0
20 Jun 2022
Causal Representation Learning for Instantaneous and Temporal Effects in
  Interactive Systems
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
65
31
0
13 Jun 2022
Efficiently Modeling Long Sequences with Structured State Spaces
Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu
Karan Goel
Christopher Ré
217
1,821
0
31 Oct 2021
Deep Explicit Duration Switching Models for Time Series
Deep Explicit Duration Switching Models for Time Series
Abdul Fatir Ansari
Konstantinos Benidis
Richard Kurle
Ali Caner Turkmen
Harold Soh
Alex Smola
Yuyang Wang
Tim Januschowski
BDL
84
20
0
26 Oct 2021
Learning Temporally Causal Latent Processes from General Temporal Data
Learning Temporally Causal Latent Processes from General Temporal Data
Weiran Yao
Yuewen Sun
Alex Ho
Changyin Sun
Kun Zhang
BDLCML
91
87
0
11 Oct 2021
Disentanglement via Mechanism Sparsity Regularization: A New Principle
  for Nonlinear ICA
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CMLOOD
90
140
0
21 Jul 2021
Disentangling Identifiable Features from Noisy Data with Structured
  Nonlinear ICA
Disentangling Identifiable Features from Noisy Data with Structured Nonlinear ICA
Hermanni Hälvä
Sylvain Le Corff
Luc Lehéricy
Jonathan So
Yongjie Zhu
Elisabeth Gassiat
Aapo Hyvarinen
CML
60
65
0
17 Jun 2021
Clockwork Variational Autoencoders
Clockwork Variational Autoencoders
Vaibhav Saxena
Jimmy Ba
Danijar Hafner
VGenDRL
63
49
0
18 Feb 2021
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
112
134
0
21 Jul 2020
Hidden Markov Nonlinear ICA: Unsupervised Learning from Nonstationary
  Time Series
Hidden Markov Nonlinear ICA: Unsupervised Learning from Nonstationary Time Series
Hermanni Hälvä
Aapo Hyvarinen
OODBDLCML
62
79
0
22 Jun 2020
Independent Innovation Analysis for Nonlinear Vector Autoregressive
  Process
Independent Innovation Analysis for Nonlinear Vector Autoregressive Process
H. Morioka
Hermanni Hälvä
Aapo Hyvarinen
101
22
0
19 Jun 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
510
10,591
0
17 Feb 2020
DYNOTEARS: Structure Learning from Time-Series Data
DYNOTEARS: Structure Learning from Time-Series Data
Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul Beaumont
K. Georgatzis
Bryon Aragam
CMLAI4TSBDL
77
192
0
02 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
544
42,591
0
03 Dec 2019
Collapsed Amortized Variational Inference for Switching Nonlinear
  Dynamical Systems
Collapsed Amortized Variational Inference for Switching Nonlinear Dynamical Systems
Zhe Dong
Bryan Seybold
Kevin Patrick Murphy
Hung Bui
BDL
78
31
0
21 Oct 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
71
597
0
10 Jul 2019
AMASS: Archive of Motion Capture as Surface Shapes
AMASS: Archive of Motion Capture as Surface Shapes
Naureen Mahmood
N. Ghorbani
N. Troje
Gerard Pons-Moll
Michael J. Black
3DH
48
1,259
0
05 Apr 2019
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive
  Learning
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OODCML
97
331
0
22 May 2018
Disentangled Sequential Autoencoder
Disentangled Sequential Autoencoder
Yingzhen Li
Stephan Mandt
CoGe
71
271
0
08 Mar 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLaCMLOffRL
102
949
0
04 Mar 2018
Stochastic Variational Video Prediction
Stochastic Variational Video Prediction
Mohammad Babaeizadeh
Chelsea Finn
D. Erhan
R. Campbell
Sergey Levine
DRLVGen
84
543
0
30 Oct 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
76
284
0
16 Oct 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
240
210
0
25 May 2017
Recurrent switching linear dynamical systems
Recurrent switching linear dynamical systems
Scott W. Linderman
Andrew C. Miller
Ryan P. Adams
David M. Blei
Liam Paninski
Matthew J. Johnson
107
72
0
26 Oct 2016
Composing graphical models with neural networks for structured
  representations and fast inference
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDLOCL
92
485
0
20 Mar 2016
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRLBDL
107
1,262
0
07 Jun 2015
On the Properties of Neural Machine Translation: Encoder-Decoder
  Approaches
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Kyunghyun Cho
B. V. Merrienboer
Dzmitry Bahdanau
Yoshua Bengio
AI4CEAIMat
259
6,786
0
03 Sep 2014
Identifiability of parameters in latent structure models with many
  observed variables
Identifiability of parameters in latent structure models with many observed variables
E. Allman
C. Matias
J. Rhodes
CML
159
534
0
29 Sep 2008
1