ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.14493
  4. Cited By
Do prompt positions really matter?
v1v2v3v4 (latest)

Do prompt positions really matter?

23 May 2023
Junyu Mao
Stuart E. Middleton
Mahesan Niranjan
    VLM
ArXiv (abs)PDFHTML

Papers citing "Do prompt positions really matter?"

17 / 17 papers shown
Title
Dynamic Prompting: A Unified Framework for Prompt Tuning
Dynamic Prompting: A Unified Framework for Prompt Tuning
Xianjun Yang
Wei Cheng
Xujiang Zhao
Wenchao Yu
Linda R. Petzold
Haifeng Chen
VLM
105
15
0
06 Mar 2023
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them
Mirac Suzgun
Nathan Scales
Nathanael Scharli
Sebastian Gehrmann
Yi Tay
...
Aakanksha Chowdhery
Quoc V. Le
Ed H. Chi
Denny Zhou
Jason W. Wei
ALMELMLRMReLM
271
1,139
0
17 Oct 2022
IDPG: An Instance-Dependent Prompt Generation Method
IDPG: An Instance-Dependent Prompt Generation Method
Zhuofeng Wu
Sinong Wang
Jiatao Gu
Rui Hou
Yuxiao Dong
V. Vydiswaran
Hao Ma
VLM
73
61
0
09 Apr 2022
OpenPrompt: An Open-source Framework for Prompt-learning
OpenPrompt: An Open-source Framework for Prompt-learning
Ning Ding
Shengding Hu
Weilin Zhao
Yulin Chen
Zhiyuan Liu
Haitao Zheng
Maosong Sun
VLMLLMAG
90
294
0
03 Nov 2021
Finetuned Language Models Are Zero-Shot Learners
Finetuned Language Models Are Zero-Shot Learners
Jason W. Wei
Maarten Bosma
Vincent Zhao
Kelvin Guu
Adams Wei Yu
Brian Lester
Nan Du
Andrew M. Dai
Quoc V. Le
ALMUQCV
246
3,789
0
03 Sep 2021
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
  in Natural Language Processing
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
Pengfei Liu
Weizhe Yuan
Jinlan Fu
Zhengbao Jiang
Hiroaki Hayashi
Graham Neubig
VLMSyDa
239
4,004
0
28 Jul 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
592
4,093
0
18 Apr 2021
GPT Understands, Too
GPT Understands, Too
Xiao Liu
Yanan Zheng
Zhengxiao Du
Ming Ding
Yujie Qian
Zhilin Yang
Jie Tang
VLM
168
1,182
0
18 Mar 2021
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Xiang Lisa Li
Percy Liang
252
4,305
0
01 Jan 2021
It's Not Just Size That Matters: Small Language Models Are Also Few-Shot
  Learners
It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners
Timo Schick
Hinrich Schütze
132
976
0
15 Sep 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural
  Language Inference
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
351
1,620
0
21 Jan 2020
RoBERTa: A Robustly Optimized BERT Pretraining Approach
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
M. Lewis
Luke Zettlemoyer
Veselin Stoyanov
AIMat
689
24,557
0
26 Jul 2019
SuperGLUE: A Stickier Benchmark for General-Purpose Language
  Understanding Systems
SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems
Alex Jinpeng Wang
Yada Pruksachatkun
Nikita Nangia
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
279
2,326
0
02 May 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
1.1K
7,201
0
20 Apr 2018
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
Noam M. Shazeer
Mitchell Stern
ODL
84
1,052
0
11 Apr 2018
Decoupled Weight Decay Regularization
Decoupled Weight Decay Regularization
I. Loshchilov
Frank Hutter
OffRL
154
2,158
0
14 Nov 2017
Get To The Point: Summarization with Pointer-Generator Networks
Get To The Point: Summarization with Pointer-Generator Networks
A. See
Peter J. Liu
Christopher D. Manning
3DPC
311
4,029
0
14 Apr 2017
1