ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.13309
  4. Cited By
Evaluating Factual Consistency of Texts with Semantic Role Labeling

Evaluating Factual Consistency of Texts with Semantic Role Labeling

22 May 2023
Jing Fan
Dennis Aumiller
Michael Gertz
    HILM
ArXivPDFHTML

Papers citing "Evaluating Factual Consistency of Texts with Semantic Role Labeling"

26 / 26 papers shown
Title
Natural Language Processing RELIES on Linguistics
Natural Language Processing RELIES on Linguistics
Juri Opitz
Shira Wein
Nathan Schneider
AI4CE
77
8
0
09 May 2024
G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment
G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment
Yang Liu
Dan Iter
Yichong Xu
Shuohang Wang
Ruochen Xu
Chenguang Zhu
ELM
ALM
LM&MA
163
1,176
0
29 Mar 2023
Re-Examining System-Level Correlations of Automatic Summarization
  Evaluation Metrics
Re-Examining System-Level Correlations of Automatic Summarization Evaluation Metrics
Daniel Deutsch
Rotem Dror
Dan Roth
35
45
0
21 Apr 2022
Factual Consistency Evaluation for Text Summarization via Counterfactual
  Estimation
Factual Consistency Evaluation for Text Summarization via Counterfactual Estimation
Yuexiang Xie
Fei Sun
Yang Deng
Yaliang Li
Bolin Ding
HILM
49
53
0
30 Aug 2021
BARTScore: Evaluating Generated Text as Text Generation
BARTScore: Evaluating Generated Text as Text Generation
Weizhe Yuan
Graham Neubig
Pengfei Liu
95
841
0
22 Jun 2021
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
260
310
0
27 Apr 2021
Conversational Semantic Role Labeling
Conversational Semantic Role Labeling
Kun Xu
Han Wu
Linfeng Song
Haisong Zhang
Linqi Song
Dong Yu
34
20
0
11 Apr 2021
LazyDAgger: Reducing Context Switching in Interactive Imitation Learning
LazyDAgger: Reducing Context Switching in Interactive Imitation Learning
Ryan Hoque
Ashwin Balakrishna
Carl Putterman
Michael Luo
Daniel S. Brown
Daniel Seita
Brijen Thananjeyan
Ellen R. Novoseller
Ken Goldberg
103
76
0
31 Mar 2021
SummEval: Re-evaluating Summarization Evaluation
SummEval: Re-evaluating Summarization Evaluation
Alexander R. Fabbri
Wojciech Kry'sciñski
Bryan McCann
Caiming Xiong
R. Socher
Dragomir R. Radev
HILM
90
710
0
24 Jul 2020
FEQA: A Question Answering Evaluation Framework for Faithfulness
  Assessment in Abstractive Summarization
FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization
Esin Durmus
He He
Mona T. Diab
HILM
83
392
0
07 May 2020
On Faithfulness and Factuality in Abstractive Summarization
On Faithfulness and Factuality in Abstractive Summarization
Joshua Maynez
Shashi Narayan
Bernd Bohnet
Ryan T. McDonald
HILM
77
1,031
0
02 May 2020
Automatic Machine Translation Evaluation in Many Languages via Zero-Shot
  Paraphrasing
Automatic Machine Translation Evaluation in Many Languages via Zero-Shot Paraphrasing
Brian Thompson
Matt Post
LRM
53
190
0
30 Apr 2020
Asking and Answering Questions to Evaluate the Factual Consistency of
  Summaries
Asking and Answering Questions to Evaluate the Factual Consistency of Summaries
Alex Jinpeng Wang
Kyunghyun Cho
M. Lewis
HILM
77
480
0
08 Apr 2020
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
  Generation, Translation, and Comprehension
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
M. Lewis
Yinhan Liu
Naman Goyal
Marjan Ghazvininejad
Abdel-rahman Mohamed
Omer Levy
Veselin Stoyanov
Luke Zettlemoyer
AIMat
VLM
221
10,792
0
29 Oct 2019
Evaluating the Factual Consistency of Abstractive Text Summarization
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kry'sciñski
Bryan McCann
Caiming Xiong
R. Socher
HILM
101
742
0
28 Oct 2019
Assessing The Factual Accuracy of Generated Text
Assessing The Factual Accuracy of Generated Text
Ben Goodrich
Vinay Rao
Mohammad Saleh
Peter J. Liu
HILM
87
188
0
30 May 2019
BERTScore: Evaluating Text Generation with BERT
BERTScore: Evaluating Text Generation with BERT
Tianyi Zhang
Varsha Kishore
Felix Wu
Kilian Q. Weinberger
Yoav Artzi
285
5,764
0
21 Apr 2019
Simple BERT Models for Relation Extraction and Semantic Role Labeling
Simple BERT Models for Relation Extraction and Semantic Role Labeling
Peng Shi
Jimmy J. Lin
VLM
56
445
0
10 Apr 2019
Bottom-Up Abstractive Summarization
Bottom-Up Abstractive Summarization
Sebastian Gehrmann
Yuntian Deng
Alexander M. Rush
CVBM
142
689
0
31 Aug 2018
Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional
  Neural Networks for Extreme Summarization
Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization
Shashi Narayan
Shay B. Cohen
Mirella Lapata
AILaw
117
1,671
0
27 Aug 2018
AllenNLP: A Deep Semantic Natural Language Processing Platform
AllenNLP: A Deep Semantic Natural Language Processing Platform
Matt Gardner
Joel Grus
Mark Neumann
Oyvind Tafjord
Pradeep Dasigi
Nelson F. Liu
Matthew E. Peters
Michael Schmitz
Luke Zettlemoyer
VLM
76
1,281
0
20 Mar 2018
End-to-end Neural Coreference Resolution
End-to-end Neural Coreference Resolution
Kenton Lee
Luheng He
M. Lewis
Luke Zettlemoyer
LRM
BDL
79
892
0
21 Jul 2017
Get To The Point: Summarization with Pointer-Generator Networks
Get To The Point: Summarization with Pointer-Generator Networks
A. See
Peter J. Liu
Christopher D. Manning
3DPC
263
4,014
0
14 Apr 2017
SummaRuNNer: A Recurrent Neural Network based Sequence Model for
  Extractive Summarization of Documents
SummaRuNNer: A Recurrent Neural Network based Sequence Model for Extractive Summarization of Documents
Ramesh Nallapati
Feifei Zhai
Bowen Zhou
324
1,261
0
14 Nov 2016
Abstractive Text Summarization Using Sequence-to-Sequence RNNs and
  Beyond
Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond
Ramesh Nallapati
Bowen Zhou
Cicero Nogueira dos Santos
Çağlar Gülçehre
Bing Xiang
AIMat
242
2,551
0
19 Feb 2016
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
331
3,538
0
10 Jun 2015
1