Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.01604
Cited By
The Training Process of Many Deep Networks Explores the Same Low-Dimensional Manifold
2 May 2023
Jialin Mao
Itay Griniasty
H. Teoh
Rahul Ramesh
Rubing Yang
Mark K. Transtrum
James P. Sethna
Pratik Chaudhari
3DPC
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Training Process of Many Deep Networks Explores the Same Low-Dimensional Manifold"
6 / 6 papers shown
Title
An Analytical Characterization of Sloppiness in Neural Networks: Insights from Linear Models
Jialin Mao
Itay Griniasty
Yan Sun
Mark K. Transtrum
James P. Sethna
Pratik Chaudhari
26
0
0
13 May 2025
Density estimation with LLMs: a geometric investigation of in-context learning trajectories
Toni J. B. Liu
Nicolas Boullé
Raphael Sarfati
Christopher Earls
30
0
0
07 Oct 2024
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
44
2
0
18 Jul 2024
A picture of the space of typical learnable tasks
Rahul Ramesh
Jialin Mao
Itay Griniasty
Rubing Yang
H. Teoh
Mark K. Transtrum
James P. Sethna
Pratik Chaudhari
SSL
DRL
36
5
0
31 Oct 2022
Patches Are All You Need?
Asher Trockman
J. Zico Kolter
ViT
225
402
0
24 Jan 2022
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
221
1,399
0
04 Dec 2018
1