ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.08085
  4. Cited By
Alias-Free Convnets: Fractional Shift Invariance via Polynomial
  Activations

Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations

14 March 2023
H. Michaeli
T. Michaeli
Daniel Soudry
ArXivPDFHTML

Papers citing "Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations"

22 / 22 papers shown
Title
Learnable Polyphase Sampling for Shift Invariant and Equivariant
  Convolutional Networks
Learnable Polyphase Sampling for Shift Invariant and Equivariant Convolutional Networks
Renan A. Rojas-Gomez
Teck-Yian Lim
Alex Schwing
Minh Do
Raymond A. Yeh
53
11
0
14 Oct 2022
Generalization to translation shifts: a study in architectures and
  augmentations
Generalization to translation shifts: a study in architectures and augmentations
Suriya Gunasekar
28
1
0
05 Jul 2022
Equivariance Discovery by Learned Parameter-Sharing
Equivariance Discovery by Learned Parameter-Sharing
Raymond A. Yeh
Yuan-Ting Hu
M. Hasegawa-Johnson
Alex Schwing
FedML
52
15
0
07 Apr 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
67
5,102
0
10 Jan 2022
Anti-aliasing Deep Image Classifiers using Novel Depth Adaptive Blurring
  and Activation Function
Anti-aliasing Deep Image Classifiers using Novel Depth Adaptive Blurring and Activation Function
Md Tahmid Hossain
S. Teng
Ferdous Sohel
Guojun Lu
69
13
0
03 Oct 2021
Alias-Free Generative Adversarial Networks
Alias-Free Generative Adversarial Networks
Tero Karras
M. Aittala
S. Laine
Erik Härkönen
Janne Hellsten
J. Lehtinen
Timo Aila
GAN
148
1,582
0
23 Jun 2021
Group Equivariant Subsampling
Group Equivariant Subsampling
Jin Xu
Hyunjik Kim
Tom Rainforth
Yee Whye Teh
41
22
0
10 Jun 2021
Shift Invariance Can Reduce Adversarial Robustness
Shift Invariance Can Reduce Adversarial Robustness
Songwei Ge
Vasu Singla
Ronen Basri
David Jacobs
AAML
OOD
36
27
0
03 Mar 2021
Truly shift-invariant convolutional neural networks
Truly shift-invariant convolutional neural networks
Anadi Chaman
Ivan Dokmanić
45
71
0
28 Nov 2020
An Effective Anti-Aliasing Approach for Residual Networks
An Effective Anti-Aliasing Approach for Residual Networks
C. N. Vasconcelos
Hugo Larochelle
Vincent Dumoulin
Nicolas Le Roux
Ross Goroshin
SupR
52
32
0
20 Nov 2020
Delving Deeper into Anti-aliasing in ConvNets
Delving Deeper into Anti-aliasing in ConvNets
Xueyan Zou
Fanyi Xiao
Zhiding Yu
Yong Jae Lee
SupR
46
105
0
21 Aug 2020
Shift Equivariance in Object Detection
Shift Equivariance in Object Detection
M. Manfredi
Yu Wang
ObjD
39
18
0
13 Aug 2020
Attentive Group Equivariant Convolutional Networks
Attentive Group Equivariant Convolutional Networks
David W. Romero
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
71
91
0
07 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
265
42,038
0
03 Dec 2019
General $E(2)$-Equivariant Steerable CNNs
General E(2)E(2)E(2)-Equivariant Steerable CNNs
Maurice Weiler
Gabriele Cesa
77
516
0
19 Nov 2019
Universal Approximation with Deep Narrow Networks
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
63
329
0
21 May 2019
Making Convolutional Networks Shift-Invariant Again
Making Convolutional Networks Shift-Invariant Again
Richard Y. Zhang
OOD
82
794
0
25 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
107
3,399
0
28 Mar 2019
Why do deep convolutional networks generalize so poorly to small image
  transformations?
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
57
559
0
30 May 2018
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Iro Armeni
S. Sax
Amir Zamir
Silvio Savarese
3DV
3DPC
152
881
0
03 Feb 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
532
3,264
0
24 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
1