35
1
v1v2 (latest)

Generalization to translation shifts: a study in architectures and augmentations

Abstract

We study how effective data augmentation is at capturing the inductive bias of carefully designed network architectures for spatial translation invariance. We evaluate various image classification architectures (antialiased, convolutional, vision transformer, and fully connected MLP networks) and data augmentation techniques towards generalization to large translation shifts. We observe that: (a) without data augmentation, all architectures, including convolutional networks with antialiased modification suffer some degradation in performance when evaluated on translated test distributions. Understandably, both the in-distribution accuracy and degradation to shifts is significantly worse for non-convolutional models. (b) The robustness of performance is improved by even a minimal augmentation of 44 pixel random crop across all architectures. In some instances, even 121-2 pixel random crop is sufficient. This suggests that there is a form of meta generalization from augmentation. For non-convolutional architectures, while the absolute accuracy is still low with this basic augmentation, we see substantial improvements in robustness to translation shifts. (c) With a sufficiently advanced augmentation pipeline (44 pixel crop+RandAugmentation+Erasing+MixUp), all architectures can be trained to have competitive performance in terms of in-distribution accuracy as well as generalization to large translation shifts.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.