Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.14460
Cited By
v1
v2
v3 (latest)
Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis
28 February 2023
Ricards Marcinkevics
Patricia Reis Wolfertstetter
Ugne Klimiene
Kieran Chin-Cheong
Alyssia Paschke
Julia Zerres
Markus Denzinger
David Niederberger
S. Wellmann
Ece Ozkan
C. Knorr
Julia E. Vogt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis"
19 / 19 papers shown
Title
Measuring Leakage in Concept-Based Methods: An Information Theoretic Approach
Mikael Makonnen
Moritz Vandenhirtz
Sonia Laguna
Julia E. Vogt
86
3
0
13 Apr 2025
A survey of multimodal deep generative models
Masahiro Suzuki
Y. Matsuo
SyDa
DRL
77
80
0
05 Jul 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
165
69
0
31 May 2022
Provable concept learning for interpretable predictions using variational autoencoders
Armeen Taeb
Nicolò Ruggeri
Carina Schnuck
Fanny Yang
119
5
0
01 Apr 2022
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
298
30,152
0
01 Mar 2022
Promises and Pitfalls of Black-Box Concept Learning Models
Anita Mahinpei
Justin Clark
Isaac Lage
Finale Doshi-Velez
Weiwei Pan
91
96
0
24 Jun 2021
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
110
317
0
08 Jun 2021
Do Concept Bottleneck Models Learn as Intended?
Andrei Margeloiu
Matthew Ashman
Umang Bhatt
Yanzhi Chen
M. Jamnik
Adrian Weller
SLR
56
97
0
10 May 2021
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
101
835
0
09 Jul 2020
What Makes for Good Views for Contrastive Learning?
Yonglong Tian
Chen Sun
Ben Poole
Dilip Krishnan
Cordelia Schmid
Phillip Isola
SSL
118
1,338
0
20 May 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan O. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
293
307
0
17 Oct 2019
Cats or CAT scans: transfer learning from natural or medical image source datasets?
Veronika Cheplygina
OOD
MedIm
72
59
0
12 Oct 2018
Generative Image Inpainting with Contextual Attention
Jiahui Yu
Zhe Lin
Jimei Yang
Xiaohui Shen
Xin Lu
Thomas S. Huang
GAN
DiffM
106
2,267
0
24 Jan 2018
Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly
Yongqin Xian
Christoph H. Lampert
Bernt Schiele
Zeynep Akata
VLM
172
1,572
0
03 Jul 2017
Multimodal Machine Learning: A Survey and Taxonomy
T. Baltrušaitis
Chaitanya Ahuja
Louis-Philippe Morency
119
2,945
0
26 May 2017
Selective Classification for Deep Neural Networks
Yonatan Geifman
Ran El-Yaniv
CVBM
101
530
0
23 May 2017
Reducing Overfitting in Deep Networks by Decorrelating Representations
Michael Cogswell
Faruk Ahmed
Ross B. Girshick
C. L. Zitnick
Dhruv Batra
95
415
0
19 Nov 2015
A Survey on Multi-view Learning
Chang Xu
Dacheng Tao
Chao Xu
AI4TS
122
1,132
0
20 Apr 2013
d-Separation: From Theorems to Algorithms
D. Geiger
Thomas Verma
Judea Pearl
87
242
0
27 Mar 2013
1