ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.5634
39
1123

A Survey on Multi-view Learning

20 April 2013
Chang Xu
Dacheng Tao
Chao Xu
    AI4TS
ArXivPDFHTML
Abstract

In recent years, a great many methods of learning from multi-view data by considering the diversity of different views have been proposed. These views may be obtained from multiple sources or different feature subsets. In trying to organize and highlight similarities and differences between the variety of multi-view learning approaches, we review a number of representative multi-view learning algorithms in different areas and classify them into three groups: 1) co-training, 2) multiple kernel learning, and 3) subspace learning. Notably, co-training style algorithms train alternately to maximize the mutual agreement on two distinct views of the data; multiple kernel learning algorithms exploit kernels that naturally correspond to different views and combine kernels either linearly or non-linearly to improve learning performance; and subspace learning algorithms aim to obtain a latent subspace shared by multiple views by assuming that the input views are generated from this latent subspace. Though there is significant variance in the approaches to integrating multiple views to improve learning performance, they mainly exploit either the consensus principle or the complementary principle to ensure the success of multi-view learning. Since accessing multiple views is the fundament of multi-view learning, with the exception of study on learning a model from multiple views, it is also valuable to study how to construct multiple views and how to evaluate these views. Overall, by exploring the consistency and complementary properties of different views, multi-view learning is rendered more effective, more promising, and has better generalization ability than single-view learning.

View on arXiv
Comments on this paper