ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.03655
  4. Cited By
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs

Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs

7 February 2023
Saro Passaro
C. L. Zitnick
    3DPC
ArXivPDFHTML

Papers citing "Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs"

48 / 48 papers shown
Title
SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Joohwan Seo
Soochul Yoo
Junwoo Chang
Hyunseok An
Hyunwoo Ryu
Soomi Lee
Arvind Kruthiventy
Jongeun Choi
R. Horowitz
71
2
0
12 Mar 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
Equivariant Masked Position Prediction for Efficient Molecular Representation
Equivariant Masked Position Prediction for Efficient Molecular Representation
Junyi An
C. Qu
Yun-Fei Shi
XinHao Liu
Qianwei Tang
Fenglei Cao
Yuan Qi
40
0
0
12 Feb 2025
Learning local equivariant representations for quantum operators
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
85
3
0
28 Jan 2025
Bridging Geometric States via Geometric Diffusion Bridge
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
37
0
0
31 Oct 2024
The Importance of Being Scalable: Improving the Speed and Accuracy of
  Neural Network Interatomic Potentials Across Chemical Domains
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
30
10
0
31 Oct 2024
FlowLLM: Flow Matching for Material Generation with Large Language
  Models as Base Distributions
FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions
Anuroop Sriram
Benjamin Kurt Miller
Ricky T. Q. Chen
Brandon M. Wood
AI4CE
42
14
0
30 Oct 2024
ET-Flow: Equivariant Flow-Matching for Molecular Conformer Generation
ET-Flow: Equivariant Flow-Matching for Molecular Conformer Generation
Majdi Hassan
Nikhil Shenoy
Jungyoon Lee
Hannes Stärk
Stephan Thaler
Dominique Beaini
29
6
0
29 Oct 2024
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
38
16
0
16 Oct 2024
Deconstructing equivariant representations in molecular systems
Deconstructing equivariant representations in molecular systems
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
30
2
0
10 Oct 2024
Learning Equivariant Non-Local Electron Density Functionals
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
28
1
0
10 Oct 2024
On the design space between molecular mechanics and machine learning
  force fields
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
42
4
0
03 Sep 2024
Improving Equivariant Model Training via Constraint Relaxation
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
42
4
0
23 Aug 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
SE(3)-bi-equivariant Transformers for Point Cloud Assembly
SE(3)-bi-equivariant Transformers for Point Cloud Assembly
Ziming Wang
Rebecka Jörnsten
3DPC
43
2
0
12 Jul 2024
OrbitGrasp: $SE(3)$-Equivariant Grasp Learning
OrbitGrasp: SE(3)SE(3)SE(3)-Equivariant Grasp Learning
Boce Hu
Xupeng Zhu
Dian Wang
Zihao Dong
Haojie Huang
Chenghao Wang
Robin Walters
Robert Platt
3DPC
28
9
0
03 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular
  Representation Learning
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
NeuralSCF: Neural network self-consistent fields for density functional
  theory
NeuralSCF: Neural network self-consistent fields for density functional theory
Feitong Song
Ji Feng
36
0
0
22 Jun 2024
FlowMM: Generating Materials with Riemannian Flow Matching
FlowMM: Generating Materials with Riemannian Flow Matching
Benjamin Kurt Miller
Ricky T. Q. Chen
Anuroop Sriram
Brandon M. Wood
31
33
0
07 Jun 2024
Flexible SE(2) graph neural networks with applications to PDE surrogates
Flexible SE(2) graph neural networks with applications to PDE surrogates
Maria Bånkestad
Olof Mogren
Aleksis Pirinen
56
1
0
30 May 2024
A Recipe for Charge Density Prediction
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
50
5
0
29 May 2024
Steerable Transformers
Steerable Transformers
Soumyabrata Kundu
Risi Kondor
ViT
LLMSV
30
1
0
24 May 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message
  Passing
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
49
5
0
23 May 2024
Complete and Efficient Graph Transformers for Crystal Material Property
  Prediction
Complete and Efficient Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Cong Fu
Xiaofeng Qian
Xiaoning Qian
Shuiwang Ji
43
19
0
18 Mar 2024
Generalizing Denoising to Non-Equilibrium Structures Improves
  Equivariant Force Fields
Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields
Yi-Lun Liao
Tess E. Smidt
Abhishek Das
DiffM
AI4CE
37
12
0
14 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Equivariant Frames and the Impossibility of Continuous Canonicalization
Equivariant Frames and the Impossibility of Continuous Canonicalization
Nadav Dym
Hannah Lawrence
Jonathan W. Siegel
38
17
0
25 Feb 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt
  Tensor Products
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
30
19
0
18 Jan 2024
Towards Harmonization of SO(3)-Equivariance and Expressiveness: a Hybrid
  Deep Learning Framework for Electronic-Structure Hamiltonian Prediction
Towards Harmonization of SO(3)-Equivariance and Expressiveness: a Hybrid Deep Learning Framework for Electronic-Structure Hamiltonian Prediction
Shi Yin
Xinyang Pan
Xudong Zhu
Tianyu Gao
Haochong Zhang
Feng Wu
Lixin He
43
2
0
01 Jan 2024
Higher-Order Equivariant Neural Networks for Charge Density Prediction
  in Materials
Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
Teddy Koker
Keegan Quigley
Eric Taw
Kevin Tibbetts
Lin Li
20
12
0
08 Dec 2023
Uncertainty-biased molecular dynamics for learning uniformly accurate
  interatomic potentials
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
29
13
0
03 Dec 2023
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct
  Air Capture
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
Anuroop Sriram
Sihoon Choi
Xiaohan Yu
Logan M. Brabson
Abhishek Das
Zachary W. Ulissi
Matthew Uyttendaele
A. Medford
D. Sholl
AI4CE
27
35
0
01 Nov 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed
  energy predictions
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
32
0
0
10 Oct 2023
Discovering Symmetry Breaking in Physical Systems with Relaxed Group
  Convolution
Discovering Symmetry Breaking in Physical Systems with Relaxed Group Convolution
Rui Wang
E. Hofgard
Han Gao
Robin Walters
Tess E. Smidt
AI4CE
34
9
0
03 Oct 2023
On Training Derivative-Constrained Neural Networks
On Training Derivative-Constrained Neural Networks
KaiChieh Lo
Daniel Huang
26
3
0
02 Oct 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and
  Stable Machine Learned Force Fields
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
26
3
0
21 Sep 2023
Matbench Discovery -- A framework to evaluate machine learning crystal
  stability predictions
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
36
35
0
28 Aug 2023
Equivariant Single View Pose Prediction Via Induced and Restricted
  Representations
Equivariant Single View Pose Prediction Via Induced and Restricted Representations
Owen Howell
David M. Klee
Ondrej Biza
Linfeng Zhao
Robin G. Walters
30
4
0
07 Jul 2023
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Filip Ekstrom Kelvinius
D. Georgiev
Artur P. Toshev
Johannes Gasteiger
26
7
0
26 Jun 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
26
131
0
21 Jun 2023
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
29
44
0
29 Nov 2022
Spherical Channels for Modeling Atomic Interactions
Spherical Channels for Modeling Atomic Interactions
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
79
58
0
29 Jun 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
80
215
0
23 Jun 2022
Frame Averaging for Invariant and Equivariant Network Design
Frame Averaging for Invariant and Equivariant Network Design
Omri Puny
Matan Atzmon
Heli Ben-Hamu
Ishan Misra
Aditya Grover
Edward James Smith
Y. Lipman
FedML
49
128
0
07 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,106
0
27 Apr 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas J. Guibas
3DPC
111
315
0
25 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
232
503
0
20 Oct 2020
1