ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02228
  4. Cited By
Counterfactual Identifiability of Bijective Causal Models

Counterfactual Identifiability of Bijective Causal Models

4 February 2023
Arash Nasr-Esfahany
MohammadIman Alizadeh
Devavrat Shah
    CML
    BDL
ArXivPDFHTML

Papers citing "Counterfactual Identifiability of Bijective Causal Models"

11 / 11 papers shown
Title
A New Approach to Backtracking Counterfactual Explanations: A Causal Framework for Efficient Model Interpretability
A New Approach to Backtracking Counterfactual Explanations: A Causal Framework for Efficient Model Interpretability
Pouria Fatemi
Ehsan Sharifian
Mohammad Hossein Yassaee
43
0
0
05 May 2025
Multi-Domain Causal Discovery in Bijective Causal Models
Multi-Domain Causal Discovery in Bijective Causal Models
Kasra Jalaldoust
Saber Salehkaleybar
Negar Kiyavash
CML
64
0
0
30 Apr 2025
Counterfactual Fairness by Combining Factual and Counterfactual Predictions
Counterfactual Fairness by Combining Factual and Counterfactual Predictions
Zeyu Zhou
Tianci Liu
Ruqi Bai
Jing Gao
Murat Kocaoglu
David I. Inouye
49
2
0
03 Sep 2024
Counterfactual Fairness for Predictions using Generative Adversarial
  Networks
Counterfactual Fairness for Predictions using Generative Adversarial Networks
Yuchen Ma
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
31
2
0
26 Oct 2023
Towards Characterizing Domain Counterfactuals For Invertible Latent
  Causal Models
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Zeyu Zhou
Ruqi Bai
Sean Kulinski
Murat Kocaoglu
David I. Inouye
CML
24
1
0
20 Jun 2023
ButterflyFlow: Building Invertible Layers with Butterfly Matrices
ButterflyFlow: Building Invertible Layers with Butterfly Matrices
Chenlin Meng
Linqi Zhou
Kristy Choi
Tri Dao
Stefano Ermon
TPM
136
11
0
28 Sep 2022
Identifying Patient-Specific Root Causes with the Heteroscedastic Noise
  Model
Identifying Patient-Specific Root Causes with the Heteroscedastic Noise Model
Eric V. Strobl
Thomas A. Lasko
CML
53
33
0
25 May 2022
Causal Inference Through the Structural Causal Marginal Problem
Causal Inference Through the Structural Causal Marginal Problem
Luigi Gresele
Julius von Kügelgen
Jonas M. Kubler
Elke Kirschbaum
Bernhard Schölkopf
Dominik Janzing
22
19
0
02 Feb 2022
Discovery of Single Independent Latent Variable
Discovery of Single Independent Latent Variable
Uri Shaham
Jonathan Svirsky
Ori Katz
Ronen Talmon
CML
23
2
0
12 Oct 2021
Relating Graph Neural Networks to Structural Causal Models
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
D. Dhami
Petar Velickovic
Kristian Kersting
AI4CE
CML
63
53
0
09 Sep 2021
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
223
719
0
12 May 2016
1