ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.13774
134
11

ButterflyFlow: Building Invertible Layers with Butterfly Matrices

28 September 2022
Chenlin Meng
Linqi Zhou
Kristy Choi
Tri Dao
Stefano Ermon
    TPM
ArXivPDFHTML
Abstract

Normalizing flows model complex probability distributions using maps obtained by composing invertible layers. Special linear layers such as masked and 1x1 convolutions play a key role in existing architectures because they increase expressive power while having tractable Jacobians and inverses. We propose a new family of invertible linear layers based on butterfly layers, which are known to theoretically capture complex linear structures including permutations and periodicity, yet can be inverted efficiently. This representational power is a key advantage of our approach, as such structures are common in many real-world datasets. Based on our invertible butterfly layers, we construct a new class of normalizing flow models called ButterflyFlow. Empirically, we demonstrate that ButterflyFlows not only achieve strong density estimation results on natural images such as MNIST, CIFAR-10, and ImageNet 32x32, but also obtain significantly better log-likelihoods on structured datasets such as galaxy images and MIMIC-III patient cohorts -- all while being more efficient in terms of memory and computation than relevant baselines.

View on arXiv
Comments on this paper