ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01955
  4. Cited By
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and
  reduced complexity

Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity

3 February 2023
Vincent Souveton
Arnaud Guillin
J. Jasche
G. Lavaux
Manon Michel
ArXiv (abs)PDFHTML

Papers citing "Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity"

28 / 28 papers shown
Title
Machine Fault Classification using Hamiltonian Neural Networks
Machine Fault Classification using Hamiltonian Neural Networks
Jer-Sheng Shen
Jawad Chowdhury
Sourav Banerjee
G. Terejanu
AI4CE
38
3
0
04 Jan 2023
Bayesian Inference with Latent Hamiltonian Neural Networks
Bayesian Inference with Latent Hamiltonian Neural Networks
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
BDL
73
3
0
12 Aug 2022
Continuous Methods : Hamiltonian Domain Translation
Continuous Methods : Hamiltonian Domain Translation
Emmanuel Menier
M. Bucci
Mouadh Yagoubi
L. Mathelin
Marc Schoenauer
44
1
0
08 Jul 2022
Learning Hamiltonians of constrained mechanical systems
Learning Hamiltonians of constrained mechanical systems
E. Celledoni
A. Leone
Davide Murari
B. Owren
AI4CE
116
18
0
31 Jan 2022
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
158
15,066
0
18 Jun 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
213
1,718
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
568
42,677
0
03 Dec 2019
Learning Likelihoods with Conditional Normalizing Flows
Learning Likelihoods with Conditional Normalizing Flows
Christina Winkler
Daniel E. Worrall
Emiel Hoogeboom
Max Welling
TPM
241
226
0
29 Nov 2019
Hamiltonian Generative Networks
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDLDRLAI4CEGAN
79
218
0
30 Sep 2019
Equivariant Hamiltonian Flows
Equivariant Hamiltonian Flows
Danilo Jimenez Rezende
S. Racanière
I. Higgins
Peter Toth
78
64
0
30 Sep 2019
Towards Explainable Artificial Intelligence
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
81
447
0
26 Sep 2019
A Closer Look at the Optimization Landscapes of Generative Adversarial
  Networks
A Closer Look at the Optimization Landscapes of Generative Adversarial Networks
Hugo Berard
Gauthier Gidel
Amjad Almahairi
Pascal Vincent
Simon Lacoste-Julien
GAN
56
64
0
11 Jun 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINNAI4CE
133
899
0
04 Jun 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
106
1,022
0
26 Feb 2019
Mixture Density Generative Adversarial Networks
Mixture Density Generative Adversarial Networks
Hamid Eghbalzadeh
Werner Zellinger
Gerhard Widmer
GAN
69
39
0
31 Oct 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
114
1,865
0
31 May 2018
Fast cosmic web simulations with generative adversarial networks
Fast cosmic web simulations with generative adversarial networks
Andrés C. Rodríguez
T. Kacprzak
Aurelien Lucchi
A. Amara
R. Sgier
J. Fluri
Thomas Hofmann
Alexandre Réfrégier
GANAI4CE
78
90
0
27 Jan 2018
PacGAN: The power of two samples in generative adversarial networks
PacGAN: The power of two samples in generative adversarial networks
Zinan Lin
A. Khetan
Giulia Fanti
Sewoong Oh
GAN
102
335
0
12 Dec 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
289
8,928
0
25 Aug 2017
Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
85
2,114
0
17 Jan 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,071
0
16 Feb 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
322
4,198
0
21 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
312
7,035
0
12 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
142
2,269
0
30 Oct 2014
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
302
3,282
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
189
4,315
0
18 Nov 2011
1