ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.13644
  4. Cited By
Exploring QSAR Models for Activity-Cliff Prediction

Exploring QSAR Models for Activity-Cliff Prediction

31 January 2023
Markus Dablander
Thierry Hanser
R. Lambiotte
Garrett M. Morris
ArXiv (abs)PDFHTML

Papers citing "Exploring QSAR Models for Activity-Cliff Prediction"

11 / 11 papers shown
Title
Molecular representation learning with language models and
  domain-relevant auxiliary tasks
Molecular representation learning with language models and domain-relevant auxiliary tasks
Benedek Fabian
T. Edlich
H. Gaspar
Marwin H. S. Segler
Joshua Meyers
Marco Fiscato
Mohamed Ahmed
70
128
0
26 Nov 2020
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular
  Property Prediction
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction
Seyone Chithrananda
Gabriel Grand
Bharath Ramsundar
AI4CE
88
409
0
19 Oct 2020
Beyond Textual Data: Predicting Drug-Drug Interactions from Molecular
  Structure Images using Siamese Neural Networks
Beyond Textual Data: Predicting Drug-Drug Interactions from Molecular Structure Images using Siamese Neural Networks
Devendra Singh Dhami
Siwen Yan
Gautam Kunapuli
David Page
S. Natarajan
MedImGNN
39
2
0
14 Nov 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
663
5,808
0
25 Jul 2019
Strategies for Pre-training Graph Neural Networks
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSLAI4CE
116
1,404
0
29 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DHGNN3DPC
229
4,341
0
06 Mar 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,653
0
01 Oct 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,164
0
30 Oct 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
Convolutional Networks on Graphs for Learning Molecular Fingerprints
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams
GNN
223
3,352
0
30 Sep 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,305
0
11 Feb 2015
1