ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.11355
  4. Cited By
Rigid Body Flows for Sampling Molecular Crystal Structures

Rigid Body Flows for Sampling Molecular Crystal Structures

26 January 2023
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
    AI4CE
ArXivPDFHTML

Papers citing "Rigid Body Flows for Sampling Molecular Crystal Structures"

24 / 24 papers shown
Title
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
98
2
0
16 Apr 2025
Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for Molecule Conformation and Pose
Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for Molecule Conformation and Pose
Michael Kilgour
Mark Tuckerman
Jutta Rogal
58
0
0
22 May 2024
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
63
33
0
14 Nov 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
78
90
0
03 Aug 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
66
470
0
15 Jun 2022
Smooth Normalizing Flows
Smooth Normalizing Flows
Jonas Köhler
Andreas Krämer
Frank Noé
62
54
0
01 Oct 2021
Equivariant Manifold Flows
Equivariant Manifold Flows
Isay Katsman
Aaron Lou
Derek Lim
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
AI4CE
40
25
0
19 Jul 2021
Riemannian Convex Potential Maps
Riemannian Convex Potential Maps
Samuel N. Cohen
Brandon Amos
Y. Lipman
51
22
0
18 Jun 2021
Learning Neural Generative Dynamics for Molecular Conformation
  Generation
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Yoshua Bengio
Jian-wei Peng
Jian Tang
AI4CE
68
118
0
20 Feb 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
152
98
0
10 Dec 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPM
BDL
DRL
48
92
0
06 Jul 2020
Riemannian Continuous Normalizing Flows
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
67
124
0
18 Jun 2020
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDL
AI4CE
60
81
0
18 Jun 2020
VFlow: More Expressive Generative Flows with Variational Data
  Augmentation
VFlow: More Expressive Generative Flows with Variational Data Augmentation
Jianfei Chen
Cheng Lu
Biqi Chenli
Jun Zhu
Tian Tian
DRL
49
63
0
22 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
64
89
0
17 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
105
184
0
16 Feb 2020
Targeted free energy estimation via learned mappings
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
48
89
0
12 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
71
154
0
06 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
167
1,684
0
05 Dec 2019
Neural Importance Sampling
Neural Importance Sampling
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
47
362
0
11 Aug 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
310
5,076
0
19 Jun 2018
Neural Network Renormalization Group
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
57
125
0
08 Feb 2018
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
267
619
0
22 Sep 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
227
3,689
0
26 May 2016
1