ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.07388
  4. Cited By
Learning Interpolations between Boltzmann Densities
v1v2v3v4v5 (latest)

Learning Interpolations between Boltzmann Densities

18 January 2023
Bálint Máté
Franccois Fleuret
ArXiv (abs)PDFHTML

Papers citing "Learning Interpolations between Boltzmann Densities"

29 / 29 papers shown
Title
Energy-based generator matching: A neural sampler for general state space
Energy-based generator matching: A neural sampler for general state space
Dongyeop Woo
Minsu Kim
Minkyu Kim
Kiyoung Seong
SungSoo Ahn
84
0
0
26 May 2025
Discrete Neural Flow Samplers with Locally Equivariant Transformer
Discrete Neural Flow Samplers with Locally Equivariant Transformer
Zijing Ou
Ruixiang Zhang
Yingzhen Li
71
0
0
23 May 2025
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
447
0
0
11 Apr 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
132
8
0
10 Jan 2025
Solvation Free Energies from Neural Thermodynamic Integration
Solvation Free Energies from Neural Thermodynamic Integration
Bálint Máté
François Fleuret
Tristan Bereau
66
2
0
21 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
132
22
0
03 Oct 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
194
28
0
07 Feb 2024
Deformations of Boltzmann Distributions
Deformations of Boltzmann Distributions
Bálint Máté
Franccois Fleuret
OT
60
2
0
25 Oct 2022
Flow Straight and Fast: Learning to Generate and Transfer Data with
  Rectified Flow
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
Xingchao Liu
Chengyue Gong
Qiang Liu
OOD
212
1,053
0
07 Sep 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
108
95
0
03 Aug 2022
Gauge-equivariant flow models for sampling in lattice field theories
  with pseudofermions
Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
Ryan Abbott
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
...
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
B. Tian
Julian M. Urban
78
43
0
18 Jul 2022
Gradients should stay on Path: Better Estimators of the Reverse- and
  Forward KL Divergence for Normalizing Flows
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
89
26
0
17 Jul 2022
Learning Lattice Quantum Field Theories with Equivariant Continuous
  Flows
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
59
41
0
01 Jul 2022
Flow-based sampling in the lattice Schwinger model at criticality
Flow-based sampling in the lattice Schwinger model at criticality
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
42
35
0
23 Feb 2022
Scaling Up Machine Learning For Quantum Field Theory with Equivariant
  Continuous Flows
Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows
P. D. Haan
Corrado Rainone
Miranda C. N. Cheng
Roberto Bondesan
AI4CE
59
35
0
06 Oct 2021
Flow-based sampling for fermionic lattice field theories
Flow-based sampling for fermionic lattice field theories
M. S. Albergo
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
Julian M. Urban
D. Boyda
Kyle Cranmer
D. Hackett
P. Shanahan
AI4CE
68
43
0
10 Jun 2021
Introduction to Normalizing Flows for Lattice Field Theory
Introduction to Normalizing Flows for Lattice Field Theory
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Kyle Cranmer
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
59
58
0
20 Jan 2021
Integrable Nonparametric Flows
Integrable Nonparametric Flows
David Pfau
Danilo Jimenez Rezende
45
5
0
03 Dec 2020
Sampling using $SU(N)$ gauge equivariant flows
Sampling using SU(N)SU(N)SU(N) gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
82
129
0
12 Aug 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPMBDLDRL
63
92
0
06 Jul 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
156
15,026
0
18 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric
  Densities
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler
Leon Klein
Frank Noé
DRL
121
279
0
03 Jun 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
96
89
0
17 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
136
185
0
16 Feb 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,961
0
12 Jul 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
448
5,168
0
19 Jun 2018
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
322
4,197
0
21 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
312
7,031
0
12 Mar 2015
1