ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.03415
  4. Cited By
Fast and Correct Gradient-Based Optimisation for Probabilistic
  Programming via Smoothing

Fast and Correct Gradient-Based Optimisation for Probabilistic Programming via Smoothing

9 January 2023
Basim Khajwal
C.-H. Luke Ong
Dominik Wagner
ArXivPDFHTML

Papers citing "Fast and Correct Gradient-Based Optimisation for Probabilistic Programming via Smoothing"

15 / 15 papers shown
Title
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
41
26
0
20 Jul 2019
Semantics of higher-order probabilistic programs with conditioning
Semantics of higher-order probabilistic programs with conditioning
Fredrik Dahlqvist
D. Kozen
AI4CE
32
51
0
28 Feb 2019
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
155
1,053
0
18 Oct 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
77
32
0
01 Jun 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
175
691
0
15 Nov 2017
A Convenient Category for Higher-Order Probability Theory
A Convenient Category for Higher-Order Probability Theory
C. Heunen
Ohad Kammar
S. Staton
Hongseok Yang
53
161
0
10 Jan 2017
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
315
5,364
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
186
2,531
0
02 Nov 2016
Semantics for probabilistic programming: higher-order functions,
  continuous distributions, and soft constraints
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
S. Staton
Hongseok Yang
C. Heunen
Ohad Kammar
Frank Wood
44
136
0
19 Jan 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
269
4,787
0
04 Jan 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Neural Variational Inference and Learning in Belief Networks
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
171
730
0
31 Jan 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
134
1,166
0
31 Dec 2013
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Automated Variational Inference in Probabilistic Programming
Automated Variational Inference in Probabilistic Programming
David Wingate
T. Weber
BDL
TPM
85
138
0
07 Jan 2013
1