ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.11115
  4. Cited By
What Makes for Good Tokenizers in Vision Transformer?

What Makes for Good Tokenizers in Vision Transformer?

21 December 2022
Shengju Qian
Yi Zhu
Wenbo Li
Mu Li
Jiaya Jia
    ViT
ArXivPDFHTML

Papers citing "What Makes for Good Tokenizers in Vision Transformer?"

12 / 12 papers shown
Title
AIM: Adapting Image Models for Efficient Video Action Recognition
AIM: Adapting Image Models for Efficient Video Action Recognition
Taojiannan Yang
Yi Zhu
Yusheng Xie
Aston Zhang
C. L. P. Chen
Mu Li
ViT
49
144
0
06 Feb 2023
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,434
0
11 Nov 2021
Token Pooling in Vision Transformers
Token Pooling in Vision Transformers
D. Marin
Jen-Hao Rick Chang
Anurag Ranjan
Anish K. Prabhu
Mohammad Rastegari
Oncel Tuzel
ViT
76
66
0
08 Oct 2021
Visformer: The Vision-friendly Transformer
Visformer: The Vision-friendly Transformer
Zhengsu Chen
Lingxi Xie
Jianwei Niu
Xuefeng Liu
Longhui Wei
Qi Tian
ViT
120
209
0
26 Apr 2021
VidTr: Video Transformer Without Convolutions
VidTr: Video Transformer Without Convolutions
Yanyi Zhang
Xinyu Li
Chunhui Liu
Bing Shuai
Yi Zhu
Biagio Brattoli
Hao Chen
I. Marsic
Joseph Tighe
ViT
136
193
0
23 Apr 2021
Transformer in Transformer
Transformer in Transformer
Kai Han
An Xiao
Enhua Wu
Jianyuan Guo
Chunjing Xu
Yunhe Wang
ViT
284
1,524
0
27 Feb 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
277
3,623
0
24 Feb 2021
CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary
  Representations From Characters
CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters
Hicham El Boukkouri
Olivier Ferret
Thomas Lavergne
Hiroshi Noji
Pierre Zweigenbaum
Junichi Tsujii
71
156
0
20 Oct 2020
A Mutual Information Maximization Perspective of Language Representation
  Learning
A Mutual Information Maximization Perspective of Language Representation Learning
Lingpeng Kong
Cyprien de Masson dÁutume
Wang Ling
Lei Yu
Zihang Dai
Dani Yogatama
SSL
214
165
0
18 Oct 2019
The Bottom-up Evolution of Representations in the Transformer: A Study
  with Machine Translation and Language Modeling Objectives
The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives
Elena Voita
Rico Sennrich
Ivan Titov
193
181
0
03 Sep 2019
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,743
0
26 Sep 2016
Semantic Understanding of Scenes through the ADE20K Dataset
Semantic Understanding of Scenes through the ADE20K Dataset
Bolei Zhou
Hang Zhao
Xavier Puig
Tete Xiao
Sanja Fidler
Adela Barriuso
Antonio Torralba
SSeg
253
1,828
0
18 Aug 2016
1