ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.07359
  4. Cited By
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model

Post-hoc Uncertainty Learning using a Dirichlet Meta-Model

14 December 2022
Maohao Shen
Yuheng Bu
P. Sattigeri
S. Ghosh
Subhro Das
G. Wornell
    UQCV
    OOD
    BDL
ArXivPDFHTML

Papers citing "Post-hoc Uncertainty Learning using a Dirichlet Meta-Model"

20 / 20 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
104
0
0
04 May 2025
Bi-directional Model Cascading with Proxy Confidence
Bi-directional Model Cascading with Proxy Confidence
David Warren
Mark Dras
44
0
0
27 Apr 2025
Reliable Radiologic Skeletal Muscle Area Assessment -- A Biomarker for Cancer Cachexia Diagnosis
Reliable Radiologic Skeletal Muscle Area Assessment -- A Biomarker for Cancer Cachexia Diagnosis
Sabeen Ahmed
Nathan Parker
Margaret Park
Daniel Jeong
Lauren Peres
...
Jennifer B. Permuth
Erin Siegel
M. Schabath
Yasin Yilmaz
Ghulam Rasool
45
0
0
19 Mar 2025
Revisiting Essential and Nonessential Settings of Evidential Deep
  Learning
Revisiting Essential and Nonessential Settings of Evidential Deep Learning
Mengyuan Chen
Junyu Gao
Changsheng Xu
EDL
43
1
0
01 Oct 2024
SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal
  Prediction with Graph Neural Networks
SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks
Dingyi Zhuang
Yuheng Bu
Guang Wang
Shenhao Wang
Jinhua Zhao
BDL
32
1
0
13 Sep 2024
A Comprehensive Survey on Evidential Deep Learning and Its Applications
A Comprehensive Survey on Evidential Deep Learning and Its Applications
Junyu Gao
Mengyuan Chen
Liangyu Xiang
Changsheng Xu
EDL
BDL
UQCV
42
5
0
07 Sep 2024
Are Uncertainty Quantification Capabilities of Evidential Deep Learning
  a Mirage?
Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage?
Maohao Shen
Jeonghun Ryu
Soumya Ghosh
Yuheng Bu
P. Sattigeri
Subhro Das
Greg Wornell
EDL
BDL
UQCV
33
2
0
09 Feb 2024
Think Twice Before Selection: Federated Evidential Active Learning for
  Medical Image Analysis with Domain Shifts
Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts
Jiayi Chen
Benteng Ma
Hengfei Cui
Yong-quan Xia
OOD
FedML
29
12
0
05 Dec 2023
Uncertainty-aware Language Modeling for Selective Question Answering
Uncertainty-aware Language Modeling for Selective Question Answering
Qi Yang
Shreya Ravikumar
F. Schmitt-Ulms
S. Lolla
Ege Demir
...
Sadhana Lolla
Elaheh Ahmadi
Daniela Rus
Alexander Amini
Alejandro Perez
16
7
0
26 Nov 2023
Decomposing Uncertainty for Large Language Models through Input
  Clarification Ensembling
Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling
Bairu Hou
Yujian Liu
Kaizhi Qian
Jacob Andreas
Shiyu Chang
Yang Zhang
UD
UQCV
PER
26
48
0
15 Nov 2023
Discretization-Induced Dirichlet Posterior for Robust Uncertainty
  Quantification on Regression
Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression
Xuanlong Yu
Gianni Franchi
Jindong Gu
Emanuel Aldea
UQCV
16
4
0
17 Aug 2023
Machine Learning for Infectious Disease Risk Prediction: A Survey
Machine Learning for Infectious Disease Risk Prediction: A Survey
Mutong Liu
Yang Liu
Jiming Liu
LM&MA
AI4CE
18
0
0
06 Aug 2023
How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods
  for Selective Classification with Deep Neural Networks
How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods for Selective Classification with Deep Neural Networks
L. F. P. Cattelan
Danilo Silva
UQCV
27
5
0
24 May 2023
MetaCOG: A Hierarchical Probabilistic Model for Learning Meta-Cognitive
  Visual Representations
MetaCOG: A Hierarchical Probabilistic Model for Learning Meta-Cognitive Visual Representations
Marlene D. Berke
Zhangir Azerbayev
M. Belledonne
Zenna Tavares
J. Jara-Ettinger
16
1
0
06 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning
  Methods For Uncertainty Estimation
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
45
48
0
06 Oct 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
202
81
0
16 Feb 2021
Robust Out-of-distribution Detection for Neural Networks
Robust Out-of-distribution Detection for Neural Networks
Jiefeng Chen
Yixuan Li
Xi Wu
Yingyu Liang
S. Jha
OODD
161
84
0
21 Mar 2020
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
292
10,618
0
19 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1