Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.05990
Cited By
On Computing Probabilistic Abductive Explanations
12 December 2022
Yacine Izza
Xuanxiang Huang
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
FAtt
XAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On Computing Probabilistic Abductive Explanations"
38 / 38 papers shown
Title
A Fast Kernel-based Conditional Independence test with Application to Causal Discovery
Oliver Schacht
Biwei Huang
195
0
0
16 May 2025
On Computing Relevant Features for Explaining NBCs
Yacine Izza
Sasha Rubin
84
5
0
11 Jul 2022
On Computing Probabilistic Explanations for Decision Trees
Marcelo Arenas
Pablo Barceló
M. Romero
Bernardo Subercaseaux
FAtt
73
42
0
30 Jun 2022
ASTERYX : A model-Agnostic SaT-basEd appRoach for sYmbolic and score-based eXplanations
Ryma Boumazouza
Fahima Cheikh
Bertrand Mazure
Karim Tabia
47
32
0
23 Jun 2022
Eliminating The Impossible, Whatever Remains Must Be True
Jinqiang Yu
Alexey Ignatiev
Peter Stuckey
Nina Narodytska
Sasha Rubin
69
23
0
20 Jun 2022
On Tackling Explanation Redundancy in Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
75
64
0
20 May 2022
Provably Precise, Succinct and Efficient Explanations for Decision Trees
Yacine Izza
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
FAtt
73
8
0
19 May 2022
On Deciding Feature Membership in Explanations of SDD & Related Classifiers
Xuanxiang Huang
Sasha Rubin
FAtt
LRM
45
3
0
15 Feb 2022
On Efficiently Explaining Graph-Based Classifiers
Xuanxiang Huang
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
78
39
0
02 Jun 2021
Efficient Explanations With Relevant Sets
Yacine Izza
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
FAtt
72
16
0
01 Jun 2021
Explanations for Monotonic Classifiers
Sasha Rubin
Thomas Gerspacher
M. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
76
46
0
01 Jun 2021
On Explaining Random Forests with SAT
Yacine Izza
Sasha Rubin
FAtt
105
75
0
21 May 2021
Probabilistic Sufficient Explanations
Eric Wang
Pasha Khosravi
Guy Van den Broeck
XAI
FAtt
TPM
154
25
0
21 May 2021
SAT-Based Rigorous Explanations for Decision Lists
Alexey Ignatiev
Sasha Rubin
XAI
61
46
0
14 May 2021
On Guaranteed Optimal Robust Explanations for NLP Models
Emanuele La Malfa
A. Zbrzezny
Rhiannon Michelmore
Nicola Paoletti
Marta Z. Kwiatkowska
FAtt
59
48
0
08 May 2021
On the Computational Intelligibility of Boolean Classifiers
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
45
58
0
13 Apr 2021
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
79
88
0
21 Oct 2020
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay
Sasha Rubin
Thomas Gerspacher
Martin C. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
58
63
0
13 Aug 2020
On The Reasons Behind Decisions
Adnan Darwiche
Auguste Hirth
FaML
54
149
0
21 Feb 2020
A Formal Approach to Explainability
Lior Wolf
Tomer Galanti
Tamir Hazan
FAtt
GAN
56
22
0
15 Jan 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDL
FAtt
XAI
58
132
0
20 Dec 2019
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
68
255
0
15 Nov 2019
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
79
821
0
06 Nov 2019
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
AAML
74
61
0
04 Oct 2019
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
75
443
0
26 Sep 2019
How to Manipulate CNNs to Make Them Lie: the GradCAM Case
T. Viering
Ziqi Wang
Marco Loog
E. Eisemann
AAML
FAtt
39
28
0
25 Jul 2019
Abduction-Based Explanations for Machine Learning Models
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
57
226
0
26 Nov 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
148
1,969
0
08 Oct 2018
A Symbolic Approach to Explaining Bayesian Network Classifiers
Andy Shih
Arthur Choi
Adnan Darwiche
FAtt
74
243
0
09 May 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
143
3,970
0
06 Feb 2018
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
106
688
0
02 Nov 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,267
0
24 Jun 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
250
4,273
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,018
0
22 May 2017
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
407
380
0
01 Mar 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,033
0
16 Feb 2016
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
314
7,316
0
20 Dec 2013
A Knowledge Compilation Map
Adnan Darwiche
Pierre Marquis
96
953
0
09 Jun 2011
1