ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.03131
  4. Cited By
Explainability as statistical inference

Explainability as statistical inference

6 December 2022
Hugo Senetaire
Damien Garreau
J. Frellsen
Pierre-Alexandre Mattei
    FAtt
ArXivPDFHTML

Papers citing "Explainability as statistical inference"

38 / 38 papers shown
Title
A Comparative Study of Methods for Estimating Conditional Shapley Values
  and When to Use Them
A Comparative Study of Methods for Estimating Conditional Shapley Values and When to Use Them
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
FAtt
65
12
0
16 May 2023
A Consistent and Efficient Evaluation Strategy for Attribution Methods
A Consistent and Efficient Evaluation Strategy for Attribution Methods
Yao Rong
Tobias Leemann
V. Borisov
Gjergji Kasneci
Enkelejda Kasneci
FAtt
65
96
0
01 Feb 2022
FastSHAP: Real-Time Shapley Value Estimation
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDI
FAtt
96
131
0
15 Jul 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine
  Learning
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
98
66
0
23 Jun 2021
What's a good imputation to predict with missing values?
What's a good imputation to predict with missing values?
Marine Le Morvan
Julie Josse
Erwan Scornet
Gaël Varoquaux
AI4TS
64
65
0
01 Jun 2021
Probabilistic Sufficient Explanations
Probabilistic Sufficient Explanations
Eric Wang
Pasha Khosravi
Guy Van den Broeck
XAI
FAtt
TPM
128
24
0
21 May 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
66
20
0
26 Apr 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to
  Encode Predictions in their Interpretations
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
116
70
0
02 Mar 2021
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
94
248
0
21 Nov 2020
Shapley explainability on the data manifold
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAtt
TDI
35
99
0
01 Jun 2020
Explainable $k$-Means and $k$-Medians Clustering
Explainable kkk-Means and kkk-Medians Clustering
S. Dasgupta
Nave Frost
Michal Moshkovitz
Cyrus Rashtchian
43
153
0
28 Feb 2020
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation
  Methods
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
70
817
0
06 Nov 2019
LassoNet: A Neural Network with Feature Sparsity
LassoNet: A Neural Network with Feature Sparsity
Ismael Lemhadri
Feng Ruan
L. Abraham
Robert Tibshirani
80
129
0
29 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
67
411
0
25 Jun 2019
Explaining individual predictions when features are dependent: More
  accurate approximations to Shapley values
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
55
622
0
25 Mar 2019
Reparameterizable Subset Sampling via Continuous Relaxations
Reparameterizable Subset Sampling via Continuous Relaxations
Sang Michael Xie
Stefano Ermon
BDL
48
98
0
29 Jan 2019
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
52
110
0
09 Oct 2018
Sanity Checks for Saliency Maps
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
127
1,966
0
08 Oct 2018
Importance Weighting and Variational Inference
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
50
108
0
27 Aug 2018
Explaining Image Classifiers by Counterfactual Generation
Explaining Image Classifiers by Counterfactual Generation
C. Chang
Elliot Creager
Anna Goldenberg
David Duvenaud
VLM
73
264
0
20 Jul 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
105
681
0
28 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
126
941
0
20 Jun 2018
Noise-adding Methods of Saliency Map as Series of Higher Order Partial
  Derivative
Noise-adding Methods of Saliency Map as Series of Higher Order Partial Derivative
Junghoon Seo
J. Choe
Jamyoung Koo
Seunghyeon Jeon
Beomsu Kim
Taegyun Jeon
FAtt
ODL
44
29
0
08 Jun 2018
Variational Autoencoder with Arbitrary Conditioning
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDL
DRL
55
147
0
06 Jun 2018
Learning to Explain: An Information-Theoretic Perspective on Model
  Interpretation
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
MLT
FAtt
131
574
0
21 Feb 2018
The (Un)reliability of saliency methods
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
95
685
0
02 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
276
9,760
0
25 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,864
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,519
0
11 Apr 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
105
942
0
19 Jan 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
186
2,530
0
02 Nov 2016
Rationalizing Neural Predictions
Rationalizing Neural Predictions
Tao Lei
Regina Barzilay
Tommi Jaakkola
110
812
0
13 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
268
1,245
0
01 Sep 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,133
0
18 May 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
241
8,402
0
28 Nov 2014
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
379
3,129
0
15 Aug 2013
1