Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.03131
Cited By
Explainability as statistical inference
6 December 2022
Hugo Senetaire
Damien Garreau
J. Frellsen
Pierre-Alexandre Mattei
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explainability as statistical inference"
38 / 38 papers shown
Title
A Comparative Study of Methods for Estimating Conditional Shapley Values and When to Use Them
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
FAtt
65
12
0
16 May 2023
A Consistent and Efficient Evaluation Strategy for Attribution Methods
Yao Rong
Tobias Leemann
V. Borisov
Gjergji Kasneci
Enkelejda Kasneci
FAtt
65
96
0
01 Feb 2022
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDI
FAtt
96
131
0
15 Jul 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
98
66
0
23 Jun 2021
What's a good imputation to predict with missing values?
Marine Le Morvan
Julie Josse
Erwan Scornet
Gaël Varoquaux
AI4TS
64
65
0
01 Jun 2021
Probabilistic Sufficient Explanations
Eric Wang
Pasha Khosravi
Guy Van den Broeck
XAI
FAtt
TPM
128
24
0
21 May 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
66
20
0
26 Apr 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
116
70
0
02 Mar 2021
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
94
248
0
21 Nov 2020
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAtt
TDI
35
99
0
01 Jun 2020
Explainable
k
k
k
-Means and
k
k
k
-Medians Clustering
S. Dasgupta
Nave Frost
Michal Moshkovitz
Cyrus Rashtchian
43
153
0
28 Feb 2020
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
70
817
0
06 Nov 2019
LassoNet: A Neural Network with Feature Sparsity
Ismael Lemhadri
Feng Ruan
L. Abraham
Robert Tibshirani
80
129
0
29 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
67
411
0
25 Jun 2019
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
55
622
0
25 Mar 2019
Reparameterizable Subset Sampling via Continuous Relaxations
Sang Michael Xie
Stefano Ermon
BDL
48
98
0
29 Jan 2019
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
52
110
0
09 Oct 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
127
1,966
0
08 Oct 2018
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
50
108
0
27 Aug 2018
Explaining Image Classifiers by Counterfactual Generation
C. Chang
Elliot Creager
Anna Goldenberg
David Duvenaud
VLM
73
264
0
20 Jul 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
105
681
0
28 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
126
941
0
20 Jun 2018
Noise-adding Methods of Saliency Map as Series of Higher Order Partial Derivative
Junghoon Seo
J. Choe
Jamyoung Koo
Seunghyeon Jeon
Beomsu Kim
Taegyun Jeon
FAtt
ODL
44
29
0
08 Jun 2018
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDL
DRL
55
147
0
06 Jun 2018
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
MLT
FAtt
131
574
0
21 Feb 2018
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
95
685
0
02 Nov 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
276
9,760
0
25 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,864
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,519
0
11 Apr 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
105
942
0
19 Jan 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
186
2,530
0
02 Nov 2016
Rationalizing Neural Predictions
Tao Lei
Regina Barzilay
Tommi Jaakkola
110
812
0
13 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
268
1,245
0
01 Sep 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,133
0
18 May 2015
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
241
8,402
0
28 Nov 2014
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
379
3,129
0
15 Aug 2013
1