ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09041
  4. Cited By
Anomaly Detection via Multi-Scale Contrasted Memory
v1v2 (latest)

Anomaly Detection via Multi-Scale Contrasted Memory

16 November 2022
Loic Jezequel
Ngoc-Son Vu
Jean Beaudet
A. Histace
ArXiv (abs)PDFHTML

Papers citing "Anomaly Detection via Multi-Scale Contrasted Memory"

48 / 48 papers shown
Title
Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
  All You Need
Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is All You Need
Jingyao Li
Pengguang Chen
Shaozuo Yu
Zexin He
Shu Liu
Jiaya Jia
OODD
58
45
0
06 Feb 2023
Learning Second Order Local Anomaly for General Face Forgery Detection
Learning Second Order Local Anomaly for General Face Forgery Detection
Jianwei Fei
Yunshu Dai
Peipeng Yu
Tianrun Shen
Zhihua Xia
Jian Weng
CVBM
205
55
0
30 Sep 2022
Anomaly Detection via Reverse Distillation from One-Class Embedding
Anomaly Detection via Reverse Distillation from One-Class Embedding
Hanqiu Deng
Xingyu Li
UQCV
181
479
0
26 Jan 2022
Transformaly -- Two (Feature Spaces) Are Better Than One
Transformaly -- Two (Feature Spaces) Are Better Than One
M. Cohen
S. Avidan
ViT
43
29
0
08 Dec 2021
Novelty Detection via Contrastive Learning with Negative Data
  Augmentation
Novelty Detection via Contrastive Learning with Negative Data Augmentation
Chengwei Chen
Yuan Xie
Shaohui Lin
Ruizhi Qiao
Jingren Zhou
Xin Tan
Yi Zhang
Lizhuang Ma
SSL
69
13
0
18 Jun 2021
Towards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly Detection
Karsten Roth
Latha Pemula
J. Zepeda
Bernhard Schölkopf
Thomas Brox
Peter V. Gehler
UQCV
88
919
0
15 Jun 2021
InFlow: Robust outlier detection utilizing Normalizing Flows
InFlow: Robust outlier detection utilizing Normalizing Flows
Nishant Kumar
Pia Hanfeld
Michael Hecht
Michael Bussmann
Stefan Gumhold
Nico Hoffmann
OODDOODTPM
59
4
0
10 Jun 2021
Mean-Shifted Contrastive Loss for Anomaly Detection
Mean-Shifted Contrastive Loss for Anomaly Detection
Tal Reiss
Yedid Hoshen
77
118
0
07 Jun 2021
Do We Really Need to Learn Representations from In-domain Data for
  Outlier Detection?
Do We Really Need to Learn Representations from In-domain Data for Outlier Detection?
Zhisheng Xiao
Qing Yan
Y. Amit
OODUQCV
47
18
0
19 May 2021
Masked Contrastive Learning for Anomaly Detection
Masked Contrastive Learning for Anomaly Detection
Hyunsoo Cho
Jinseok Seol
Sang-goo Lee
SSL
42
41
0
18 May 2021
Mean Shift for Self-Supervised Learning
Mean Shift for Self-Supervised Learning
Soroush Abbasi Koohpayegani
Ajinkya Tejankar
Hamed Pirsiavash
SSL
56
93
0
15 May 2021
When Does Contrastive Visual Representation Learning Work?
When Does Contrastive Visual Representation Learning Work?
Elijah Cole
Xuan S. Yang
Kimberly Wilber
Oisin Mac Aodha
Serge Belongie
SSL
71
125
0
12 May 2021
With a Little Help from My Friends: Nearest-Neighbor Contrastive
  Learning of Visual Representations
With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations
Debidatta Dwibedi
Y. Aytar
Jonathan Tompson
P. Sermanet
Andrew Zisserman
SSL
235
467
0
29 Apr 2021
Fine-grained Anomaly Detection via Multi-task Self-Supervision
Fine-grained Anomaly Detection via Multi-task Self-Supervision
Loic Jezequel
Ngoc-Son Vu
Jean Beaudet
A. Histace
87
6
0
20 Apr 2021
An Efficient Approach for Anomaly Detection in Traffic Videos
An Efficient Approach for Anomaly Detection in Traffic Videos
Keval Doshi
Yasin Yılmaz
58
14
0
20 Apr 2021
CutPaste: Self-Supervised Learning for Anomaly Detection and
  Localization
CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
Chun-Liang Li
Kihyuk Sohn
Jinsung Yoon
Tomas Pfister
SSLUQCV
90
781
0
08 Apr 2021
Elsa: Energy-based learning for semi-supervised anomaly detection
Elsa: Energy-based learning for semi-supervised anomaly detection
Sungwon Han
Hyeonho Song
Seungeon Lee
Sungwon Park
M. Cha
52
12
0
29 Mar 2021
SSD: A Unified Framework for Self-Supervised Outlier Detection
SSD: A Unified Framework for Self-Supervised Outlier Detection
Vikash Sehwag
M. Chiang
Prateek Mittal
OODD
103
343
0
22 Mar 2021
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Jure Zbontar
Li Jing
Ishan Misra
Yann LeCun
Stéphane Deny
SSL
344
2,362
0
04 Mar 2021
Multiresolution Knowledge Distillation for Anomaly Detection
Multiresolution Knowledge Distillation for Anomaly Detection
Mohammadreza Salehi
Niousha Sadjadi
Soroosh Baselizadeh
M. Rohban
Hamid R. Rabiee
129
442
0
22 Nov 2020
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
258
4,067
0
20 Nov 2020
Learning and Evaluating Representations for Deep One-class
  Classification
Learning and Evaluating Representations for Deep One-class Classification
Kihyuk Sohn
Chun-Liang Li
Jinsung Yoon
Minho Jin
Tomas Pfister
SSL
131
201
0
04 Nov 2020
PANDA: Adapting Pretrained Features for Anomaly Detection and
  Segmentation
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Tal Reiss
Niv Cohen
Liron Bergman
Yedid Hoshen
69
252
0
12 Oct 2020
Hopfield Networks is All You Need
Hopfield Networks is All You Need
Hubert Ramsauer
Bernhard Schafl
Johannes Lehner
Philipp Seidl
Michael Widrich
...
David P. Kreil
Michael K Kopp
Günter Klambauer
Johannes Brandstetter
Sepp Hochreiter
114
436
0
16 Jul 2020
CSI: Novelty Detection via Contrastive Learning on Distributionally
  Shifted Instances
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
Jihoon Tack
Sangwoo Mo
Jongheon Jeong
Jinwoo Shin
OODD
85
602
0
16 Jul 2020
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Jihun Yi
Sungroh Yoon
153
385
0
29 Jun 2020
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCLSSL
249
4,097
0
17 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
374
6,833
0
13 Jun 2020
Classification-Based Anomaly Detection for General Data
Classification-Based Anomaly Detection for General Data
Liron Bergman
Yedid Hoshen
52
351
0
05 May 2020
Learning Memory-guided Normality for Anomaly Detection
Learning Memory-guided Normality for Anomaly Detection
Hyunjong Park
Jongyoun Noh
Bumsub Ham
56
641
0
30 Mar 2020
Deep Nearest Neighbor Anomaly Detection
Deep Nearest Neighbor Anomaly Detection
Liron Bergman
Niv Cohen
Yedid Hoshen
UQCV
82
160
0
24 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
375
18,859
0
13 Feb 2020
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
207
12,121
0
13 Nov 2019
Deep Variational Semi-Supervised Novelty Detection
Deep Variational Semi-Supervised Novelty Detection
Tal Daniel
Thanard Kurutach
Aviv Tamar
DRLUQCV
67
21
0
12 Nov 2019
Biometric Face Presentation Attack Detection with Multi-Channel
  Convolutional Neural Network
Biometric Face Presentation Attack Detection with Multi-Channel Convolutional Neural Network
Anjith George
Z. Mostaani
David Geissenbuhler
Olegs Nikisins
André Anjos
S´ebastien Marcel
CVBMAAML
97
215
0
19 Sep 2019
Using Self-Supervised Learning Can Improve Model Robustness and
  Uncertainty
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OODSSL
56
948
0
28 Jun 2019
Likelihood Ratios for Out-of-Distribution Detection
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
200
726
0
07 Jun 2019
Deep Semi-Supervised Anomaly Detection
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
58
547
0
06 Jun 2019
Memorizing Normality to Detect Anomaly: Memory-augmented Deep
  Autoencoder for Unsupervised Anomaly Detection
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
Dong Gong
Lingqiao Liu
Vuong Le
Budhaditya Saha
M. Mansour
Svetha Venkatesh
Anton Van Den Hengel
UQCV
49
1,269
0
04 Apr 2019
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent
  Representations
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent Representations
Pramuditha Perera
Ramesh Nallapati
Bing Xiang
118
526
0
20 Mar 2019
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
S. Akçay
Amir Atapour-Abarghouei
T. Breckon
GAN
78
1,396
0
17 May 2018
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedImGAN
108
2,231
0
17 Mar 2017
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
341
8,169
0
13 Aug 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
LSUN: Construction of a Large-scale Image Dataset using Deep Learning
  with Humans in the Loop
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
Feng Yu
Ari Seff
Yinda Zhang
Shuran Song
Thomas Funkhouser
Jianxiong Xiao
102
2,343
0
10 Jun 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,590
0
01 Sep 2014
Semi-Supervised Learning with Deep Generative Models
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GANSSLBDL
88
2,742
0
20 Jun 2014
Toward Supervised Anomaly Detection
Toward Supervised Anomaly Detection
Nico Görnitz
Marius Kloft
Konrad Rieck
Ulf Brefeld
AAML
70
387
0
23 Jan 2014
1