ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09008
  4. Cited By
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational
  Wave Population Study

Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study

15 November 2022
David Ruhe
Kaze W. K. Wong
M. Cranmer
Patrick Forré
ArXivPDFHTML

Papers citing "Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study"

19 / 19 papers shown
Title
Automated discovery of interpretable gravitational-wave population
  models
Automated discovery of interpretable gravitational-wave population models
Kaze W. K. Wong
M. Cranmer
34
8
0
25 Jul 2022
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
55
28
0
11 Nov 2020
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks
  with Symmetric Splitting
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Adam D. Cobb
Brian Jalaian
BDL
58
76
0
14 Oct 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
65
29
0
02 Jun 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
191
1,687
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
393
42,299
0
03 Dec 2019
Block Neural Autoregressive Flow
Block Neural Autoregressive Flow
Nicola De Cao
Ivan Titov
Wilker Aziz
DRL
46
123
0
09 Apr 2019
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
144
1,050
0
18 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
279
3,124
0
09 Jul 2018
Sylvester Normalizing Flows for Variational Inference
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDL
DRL
74
253
0
15 Mar 2018
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
195
1,351
0
19 May 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
748
5,798
0
05 Dec 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
127
1,816
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
250
3,693
0
26 May 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
750
9,290
0
06 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
300
4,167
0
21 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,276
0
09 Jun 2012
Extreme deconvolution: Inferring complete distribution functions from
  noisy, heterogeneous and incomplete observations
Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations
J. Bovy
D. Hogg
S. Roweis
76
126
0
19 May 2009
1