ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08422
  4. Cited By
Mechanistic Mode Connectivity

Mechanistic Mode Connectivity

15 November 2022
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
ArXivPDFHTML

Papers citing "Mechanistic Mode Connectivity"

50 / 110 papers shown
Title
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
328
1,734
0
29 Jun 2020
The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
  Networks
The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks
Wei Hu
Lechao Xiao
Ben Adlam
Jeffrey Pennington
56
63
0
25 Jun 2020
Spherical Perspective on Learning with Normalization Layers
Spherical Perspective on Learning with Normalization Layers
Simon Roburin
Yann de Mont-Marin
Andrei Bursuc
Renaud Marlet
P. Pérez
Mathieu Aubry
33
6
0
23 Jun 2020
What shapes feature representations? Exploring datasets, architectures,
  and training
What shapes feature representations? Exploring datasets, architectures, and training
Katherine L. Hermann
Andrew Kyle Lampinen
OOD
73
157
0
22 Jun 2020
Noise or Signal: The Role of Image Backgrounds in Object Recognition
Noise or Signal: The Role of Image Backgrounds in Object Recognition
Kai Y. Xiao
Logan Engstrom
Andrew Ilyas
Aleksander Madry
134
387
0
17 Jun 2020
The Pitfalls of Simplicity Bias in Neural Networks
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
65
359
0
13 Jun 2020
An Investigation of Why Overparameterization Exacerbates Spurious
  Correlations
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
188
379
0
09 May 2020
Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness
Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness
Pu Zhao
Pin-Yu Chen
Payel Das
Karthikeyan N. Ramamurthy
Xue Lin
AAML
114
188
0
30 Apr 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
201
2,048
0
16 Apr 2020
Editable Neural Networks
Editable Neural Networks
A. Sinitsin
Vsevolod Plokhotnyuk
Dmitriy V. Pyrkin
Sergei Popov
Artem Babenko
KELM
99
182
0
01 Apr 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
298
934
0
02 Mar 2020
Global Convergence of Deep Networks with One Wide Layer Followed by
  Pyramidal Topology
Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology
Quynh N. Nguyen
Marco Mondelli
ODL
AI4CE
41
68
0
18 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
237
317
0
07 Feb 2020
From deep learning to mechanistic understanding in neuroscience: the
  structure of retinal prediction
From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction
Hidenori Tanaka
Aran Nayebi
Niru Maheswaranathan
Lane T. McIntosh
S. Baccus
Surya Ganguli
FAtt
44
61
0
12 Dec 2019
Linear Mode Connectivity and the Lottery Ticket Hypothesis
Linear Mode Connectivity and the Lottery Ticket Hypothesis
Jonathan Frankle
Gintare Karolina Dziugaite
Daniel M. Roy
Michael Carbin
MoMe
149
618
0
11 Dec 2019
What Do Compressed Deep Neural Networks Forget?
What Do Compressed Deep Neural Networks Forget?
Sara Hooker
Aaron Courville
Gregory Clark
Yann N. Dauphin
Andrea Frome
87
185
0
13 Nov 2019
Model Fusion via Optimal Transport
Model Fusion via Optimal Transport
Sidak Pal Singh
Martin Jaggi
MoMe
FedML
101
234
0
12 Oct 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
71
595
0
10 Jul 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
179
2,223
0
05 Jul 2019
Explaining Landscape Connectivity of Low-cost Solutions for Multilayer
  Nets
Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets
Rohith Kuditipudi
Xiang Wang
Holden Lee
Yi Zhang
Zhiyuan Li
Wei Hu
Sanjeev Arora
Rong Ge
FAtt
88
93
0
14 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
81
335
0
13 Jun 2019
Model Similarity Mitigates Test Set Overuse
Model Similarity Mitigates Test Set Overuse
Horia Mania
John Miller
Ludwig Schmidt
Moritz Hardt
Benjamin Recht
51
51
0
29 May 2019
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
77
210
0
29 May 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
128
247
0
28 May 2019
The Incomplete Rosetta Stone Problem: Identifiability Results for
  Multi-View Nonlinear ICA
The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA
Luigi Gresele
Paul Kishan Rubenstein
Arash Mehrjou
Francesco Locatello
Bernhard Schölkopf
44
100
0
16 May 2019
Do ImageNet Classifiers Generalize to ImageNet?
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
SSeg
VLM
113
1,714
0
13 Feb 2019
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural
  Language Inference
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference
R. Thomas McCoy
Ellie Pavlick
Tal Linzen
129
1,237
0
04 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
195
972
0
24 Jan 2019
On Connected Sublevel Sets in Deep Learning
On Connected Sublevel Sets in Deep Learning
Quynh N. Nguyen
88
102
0
22 Jan 2019
Elimination of All Bad Local Minima in Deep Learning
Elimination of All Bad Local Minima in Deep Learning
Kenji Kawaguchi
L. Kaelbling
69
44
0
02 Jan 2019
An Empirical Study of Example Forgetting during Deep Neural Network
  Learning
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
109
733
0
12 Dec 2018
Counterfactuals uncover the modular structure of deep generative models
Counterfactuals uncover the modular structure of deep generative models
M. Besserve
Arash Mehrjou
Rémy Sun
Bernhard Schölkopf
DRL
BDL
DiffM
84
107
0
08 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
115
1,466
0
29 Nov 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
100
2,668
0
29 Nov 2018
Rethinking ImageNet Pre-training
Rethinking ImageNet Pre-training
Kaiming He
Ross B. Girshick
Piotr Dollár
VLM
SSeg
125
1,084
0
21 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
192
1,135
0
09 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
60
166
0
01 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
214
1,272
0
04 Oct 2018
On the loss landscape of a class of deep neural networks with no bad
  local valleys
On the loss landscape of a class of deep neural networks with no bad local valleys
Quynh N. Nguyen
Mahesh Chandra Mukkamala
Matthias Hein
67
87
0
27 Sep 2018
Domain Generalization via Conditional Invariant Representation
Domain Generalization via Conditional Invariant Representation
Ya Li
Biwei Huang
Xinmei Tian
Tongliang Liu
Dacheng Tao
AI4CE
OOD
122
259
0
23 Jul 2018
Recognition in Terra Incognita
Recognition in Terra Incognita
Sara Beery
Grant Van Horn
Pietro Perona
92
847
0
13 Jul 2018
On the Spectral Bias of Neural Networks
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
141
1,438
0
22 Jun 2018
Algorithmic Regularization in Learning Deep Homogeneous Models: Layers
  are Automatically Balanced
Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced
S. Du
Wei Hu
Jason D. Lee
MLT
129
241
0
04 Jun 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
124
411
0
01 Jun 2018
Deep learning generalizes because the parameter-function map is biased
  towards simple functions
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
79
231
0
22 May 2018
Mad Max: Affine Spline Insights into Deep Learning
Mad Max: Affine Spline Insights into Deep Learning
Randall Balestriero
Richard Baraniuk
AI4CE
54
78
0
17 May 2018
Averaging Weights Leads to Wider Optima and Better Generalization
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedML
MoMe
121
1,659
0
14 Mar 2018
Convergence of Gradient Descent on Separable Data
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
Jason D. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
67
169
0
05 Mar 2018
Essentially No Barriers in Neural Network Energy Landscape
Essentially No Barriers in Neural Network Energy Landscape
Felix Dräxler
K. Veschgini
M. Salmhofer
Fred Hamprecht
MoMe
111
432
0
02 Mar 2018
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
T. Garipov
Pavel Izmailov
Dmitrii Podoprikhin
Dmitry Vetrov
A. Wilson
UQCV
83
750
0
27 Feb 2018
Previous
123
Next