ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08422
  4. Cited By
Mechanistic Mode Connectivity

Mechanistic Mode Connectivity

15 November 2022
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
ArXivPDFHTML

Papers citing "Mechanistic Mode Connectivity"

50 / 110 papers shown
Title
Understanding Mode Connectivity via Parameter Space Symmetry
Understanding Mode Connectivity via Parameter Space Symmetry
B. Zhao
Nima Dehmamy
Robin Walters
Rose Yu
211
7
0
29 May 2025
Beyond the Permutation Symmetry of Transformers: The Role of Rotation for Model Fusion
Beyond the Permutation Symmetry of Transformers: The Role of Rotation for Model Fusion
Binchi Zhang
Zaiyi Zheng
Zhengzhang Chen
Wenlin Yao
176
0
0
01 Feb 2025
ICLR: In-Context Learning of Representations
ICLR: In-Context Learning of Representations
Core Francisco Park
Andrew Lee
Ekdeep Singh Lubana
Yongyi Yang
Maya Okawa
Kento Nishi
Martin Wattenberg
Hidenori Tanaka
AIFin
201
6
0
29 Dec 2024
Task-Specific Skill Localization in Fine-tuned Language Models
Task-Specific Skill Localization in Fine-tuned Language Models
A. Panigrahi
Nikunj Saunshi
Haoyu Zhao
Sanjeev Arora
MoMe
59
74
0
13 Feb 2023
Characterizing Datapoints via Second-Split Forgetting
Characterizing Datapoints via Second-Split Forgetting
Pratyush Maini
Saurabh Garg
Zachary Chase Lipton
J. Zico Kolter
58
34
0
26 Oct 2022
On Feature Learning in the Presence of Spurious Correlations
On Feature Learning in the Presence of Spurious Correlations
Pavel Izmailov
Polina Kirichenko
Nate Gruver
A. Wilson
91
128
0
20 Oct 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
287
330
0
11 Sep 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
72
29
0
06 Jul 2022
Measuring Representational Robustness of Neural Networks Through Shared
  Invariances
Measuring Representational Robustness of Neural Networks Through Shared Invariances
Vedant Nanda
Till Speicher
Camila Kolling
John P. Dickerson
Krishna P. Gummadi
Adrian Weller
101
14
0
23 Jun 2022
Modeling the Data-Generating Process is Necessary for
  Out-of-Distribution Generalization
Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization
Jivat Neet Kaur
Emre Kıcıman
Amit Sharma
UQCV
OOD
64
26
0
15 Jun 2022
Linear Connectivity Reveals Generalization Strategies
Linear Connectivity Reveals Generalization Strategies
Jeevesh Juneja
Rachit Bansal
Kyunghyun Cho
João Sedoc
Naomi Saphra
285
45
0
24 May 2022
Diverse Weight Averaging for Out-of-Distribution Generalization
Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Ramé
Matthieu Kirchmeyer
Thibaud Rahier
A. Rakotomamonjy
Patrick Gallinari
Matthieu Cord
OOD
236
133
0
19 May 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
78
333
0
06 Apr 2022
Model soups: averaging weights of multiple fine-tuned models improves
  accuracy without increasing inference time
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
136
981
1
10 Mar 2022
Rethinking the Role of Demonstrations: What Makes In-Context Learning
  Work?
Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
Sewon Min
Xinxi Lyu
Ari Holtzman
Mikel Artetxe
M. Lewis
Hannaneh Hajishirzi
Luke Zettlemoyer
LLMAG
LRM
155
1,481
0
25 Feb 2022
Fine-Tuning can Distort Pretrained Features and Underperform
  Out-of-Distribution
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution
Ananya Kumar
Aditi Raghunathan
Robbie Jones
Tengyu Ma
Percy Liang
OODD
114
671
0
21 Feb 2022
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
  for Out-of-Distribution Generalization
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
68
81
0
14 Feb 2022
Diversify and Disambiguate: Learning From Underspecified Data
Diversify and Disambiguate: Learning From Underspecified Data
Yoonho Lee
Huaxiu Yao
Chelsea Finn
254
66
0
07 Feb 2022
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of
  Flat Regions in the Landscape Geometry
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of Flat Regions in the Landscape Geometry
Fabrizio Pittorino
Antonio Ferraro
Gabriele Perugini
Christoph Feinauer
Carlo Baldassi
R. Zecchina
245
24
0
07 Feb 2022
When Do Flat Minima Optimizers Work?
When Do Flat Minima Optimizers Work?
Jean Kaddour
Linqing Liu
Ricardo M. A. Silva
Matt J. Kusner
ODL
71
62
0
01 Feb 2022
Editing a classifier by rewriting its prediction rules
Editing a classifier by rewriting its prediction rules
Shibani Santurkar
Dimitris Tsipras
Mahalaxmi Elango
David Bau
Antonio Torralba
Aleksander Madry
KELM
230
90
0
02 Dec 2021
Augmentations in Graph Contrastive Learning: Current Methodological
  Flaws & Towards Better Practices
Augmentations in Graph Contrastive Learning: Current Methodological Flaws & Towards Better Practices
Puja Trivedi
Ekdeep Singh Lubana
Yujun Yan
Yaoqing Yang
Danai Koutra
55
55
0
05 Nov 2021
A Fine-Grained Analysis on Distribution Shift
A Fine-Grained Analysis on Distribution Shift
Olivia Wiles
Sven Gowal
Florian Stimberg
Sylvestre-Alvise Rebuffi
Ira Ktena
Krishnamurthy Dvijotham
A. Cemgil
OOD
285
212
0
21 Oct 2021
Fast Model Editing at Scale
Fast Model Editing at Scale
E. Mitchell
Charles Lin
Antoine Bosselut
Chelsea Finn
Christopher D. Manning
KELM
328
366
0
21 Oct 2021
The Role of Permutation Invariance in Linear Mode Connectivity of Neural
  Networks
The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks
R. Entezari
Hanie Sedghi
O. Saukh
Behnam Neyshabur
MoMe
77
229
0
12 Oct 2021
Distinguishing rule- and exemplar-based generalization in learning
  systems
Distinguishing rule- and exemplar-based generalization in learning systems
Ishita Dasgupta
Erin Grant
Thomas Griffiths
59
16
0
08 Oct 2021
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space
  Perspective
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective
Luca Scimeca
Seong Joon Oh
Sanghyuk Chun
Michael Poli
Sangdoo Yun
OOD
481
54
0
06 Oct 2021
Designing Counterfactual Generators using Deep Model Inversion
Designing Counterfactual Generators using Deep Model Inversion
Jayaraman J. Thiagarajan
V. Narayanaswamy
Deepta Rajan
J. Liang
Akshay S. Chaudhari
A. Spanias
DiffM
33
22
0
29 Sep 2021
Robust fine-tuning of zero-shot models
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
124
724
0
04 Sep 2021
Independent mechanism analysis, a new concept?
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
48
102
0
09 Jun 2021
Self-Supervised Learning with Data Augmentations Provably Isolates
  Content from Style
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
97
313
0
08 Jun 2021
Geometry of the Loss Landscape in Overparameterized Neural Networks:
  Symmetries and Invariances
Geometry of the Loss Landscape in Overparameterized Neural Networks: Symmetries and Invariances
Berfin cSimcsek
François Ged
Arthur Jacot
Francesco Spadaro
Clément Hongler
W. Gerstner
Johanni Brea
AI4CE
65
96
0
25 May 2021
Noether's Learning Dynamics: Role of Symmetry Breaking in Neural
  Networks
Noether's Learning Dynamics: Role of Symmetry Breaking in Neural Networks
Hidenori Tanaka
D. Kunin
68
29
0
06 May 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
350
1,148
0
27 Apr 2021
Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling
Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling
Gregory W. Benton
Wesley J. Maddox
Sanae Lotfi
A. Wilson
UQCV
84
69
0
25 Feb 2021
Nonlinear Invariant Risk Minimization: A Causal Approach
Nonlinear Invariant Risk Minimization: A Causal Approach
Chaochao Lu
Yuhuai Wu
Jośe Miguel Hernández-Lobato
Bernhard Schölkopf
CML
OOD
75
51
0
24 Feb 2021
Towards Causal Representation Learning
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OOD
CML
AI4CE
109
322
0
22 Feb 2021
Learning Neural Network Subspaces
Learning Neural Network Subspaces
Mitchell Wortsman
Maxwell Horton
Carlos Guestrin
Ali Farhadi
Mohammad Rastegari
UQCV
48
87
0
20 Feb 2021
When Are Solutions Connected in Deep Networks?
When Are Solutions Connected in Deep Networks?
Quynh N. Nguyen
Pierre Bréchet
Marco Mondelli
54
10
0
18 Feb 2021
How do Quadratic Regularizers Prevent Catastrophic Forgetting: The Role
  of Interpolation
How do Quadratic Regularizers Prevent Catastrophic Forgetting: The Role of Interpolation
Ekdeep Singh Lubana
Puja Trivedi
Danai Koutra
Robert P. Dick
59
15
0
04 Feb 2021
Shape or Texture: Understanding Discriminative Features in CNNs
Shape or Texture: Understanding Discriminative Features in CNNs
Md. Amirul Islam
M. Kowal
Patrick Esser
Sen Jia
Bjorn Ommer
Konstantinos G. Derpanis
Neil D. B. Bruce
69
75
0
27 Jan 2021
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning
  Dynamics
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
141
79
0
08 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
116
266
0
18 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine
  Learning
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
109
687
0
06 Nov 2020
Causal Autoregressive Flows
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
66
110
0
04 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
98
82
0
27 Oct 2020
Linear Mode Connectivity in Multitask and Continual Learning
Linear Mode Connectivity in Multitask and Continual Learning
Seyed Iman Mirzadeh
Mehrdad Farajtabar
Dilan Görür
Razvan Pascanu
H. Ghasemzadeh
CLL
66
141
0
09 Oct 2020
What is being transferred in transfer learning?
What is being transferred in transfer learning?
Behnam Neyshabur
Hanie Sedghi
Chiyuan Zhang
100
520
0
26 Aug 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
87
132
0
21 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
108
546
0
01 Jul 2020
123
Next